首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
为探讨转vp28蓝藻(Anabaena sp.PCC7120)口服剂对凡纳滨对虾抗白斑综合征病毒能力及其相应的免疫反应,本研究将此口服剂免疫幼虾7 d,再分别通过投喂攻毒和浸泡攻毒,测定其存活率及相应的免疫指标。投喂攻毒和浸泡攻毒的实验组存活率分别为78.8%和83.19%,表明该口服剂能显著增强对虾抗白斑综合征病毒的能力。蓝藻口服剂免疫对虾的酶活性检测结果显示,超氧化物歧化酶(SOD)、酚氧化酶(PO)、过氧化氢酶(CAT)和碱性磷酸酶(AKP)活性在免疫后2 h均有上升趋势,且在48或96 h达到最高值,这表明该口服剂能引起对虾体内酶活性变化。投喂攻毒的对虾酶活性检测结果显示,实验组攻毒后的对虾肝胰腺SOD活性分别比阳性对照组、野生型组、空载体组显著提高42.10%、32.26%和16.04%,且攻毒后的肌肉SOD活性分别比阴性对照组、阳性对照组、野生型组和空载体组略微提高17.70%、11.50%、15.00%以及10.00%。实验组攻毒后的对虾肝胰腺PO、CAT和AKP活性比阳性对照组分别提高12.17%、88.80%和240.07%,比野生型组分别提高21.49%、30.90%和100%;酸性磷酸酶(ACP)活性比阴性对照组略微提高,而在肌肉中各组ACP活性无显著性差异。同时浸泡攻毒组结果与投喂攻毒组具有类似的趋势。浸泡攻毒的实验组CAT和AKP活性显著高于其余处理组,且CAT活性比投喂攻毒更为显著。浸泡攻毒的实验组肝胰腺PO活性显著高于阳性对照组、野生型组和空载体组,而各组肌肉ACP活性无显著性差异。研究表明,转vp28蓝藻口服剂能够增强凡纳滨对虾抗病能力并延缓对虾死亡。转vp28蓝藻PCC7120本身可作为幼虾饵料直接投喂,无需提取纯化,有望大规模应用于对虾养殖产业。  相似文献   

2.
Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen‐free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV‐infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid‐body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve‐SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds.  相似文献   

3.
为了探究LvRab5B蛋白在凡纳滨对虾抗病毒感染中的作用,实验分别构建了LvRab5B蛋白在昆虫和酵母细胞中的融合表达载体,将不同的载体导入不同的细胞中,利用免疫荧光和酵母双杂交的方法研究了Lv Rab5B蛋白在昆虫细胞中的表达以及Lv Rab5B蛋白与病毒IHHNV之间的互作关系;通过qRT-PCR方法研究了该蛋白在健康对虾不同组织中的表达情况以及凡纳滨对虾分别感染IHHNV和WSSV后不同时间点的相对表达量。结果显示,Lv Rab5B基因融合蛋白能够在昆虫细胞中表达;Lv Rab5B蛋白与IHHNV病毒衣壳蛋白CP无相互作用,而与非结构蛋白NS1相互作用明显,与非结构蛋白NS2作用较弱。qRT-PCR结果显示,LvRab5B基因在凡纳滨对虾心脏、鳃腺、肠道、胃、肝胰脏和肌肉中都表达,在肠道中表达量最高,肝胰脏次之;Lv Rab5B蛋白在凡纳滨对虾机体感染病毒前后的表达情况不同,感染初期表达降低,随后迅速上升,末期下降。研究表明,LvRab5B基因参与凡纳滨对虾抵抗IHHNV和WSSV病毒的先天免疫过程,为进一步研究Lv Rab5B蛋白在对虾机体中的免疫功能及作用机制奠定了基础。  相似文献   

4.
White leg shrimp, Penaeus vannamei, were collected on a monthly basis from grow‐out ponds located at Tamil Nadu and Andhra Pradesh states along the east coast of India for screening of viral and other pathogens. Totally 240 shrimp samples randomly collected from 92 farms were screened for white spot syndrome virus (WSSV), infectious hypodermal and haematopoietic necrosis virus (IHHNV), infectious myonecrosis virus (IMNV) and Enterocytozoon hepatopenaei (EHP). The number of shrimp collected from shrimp farms ranged from 6 to 20 based on the body weight of the shrimp. All the shrimp collected from one farm were pooled together for screening for pathogens by PCR assay. Among the samples screened, 28 samples were WSSV‐positive, one positive for IHHNV and 30 samples positive for EHP. Among the positive samples, four samples were found to be positive for both WSSV and EHP, which indicated that the shrimp had multiple infections with WSSV and EHP. This is the first report on the occurrence of multiple infections caused by WSSV and EHP. Multiplex PCR (m‐PCR) protocol was standardized to detect both pathogens simultaneously in single reaction instead of carrying out separate PCR for both pathogens. Using m‐PCR assay, naturally infected shrimp samples collected from field showed two prominent bands of 615 and 510 bp for WSSV and EHP, respectively.  相似文献   

5.
A multiplex PCR kit for simultaneous detection of white spot syndrome virus (WSSV) and hepatopancreatic parvovirus (HPV) was developed and field testing was conducted. A 604‐bp target sequence was selected from the vp28 gene of WSSV. A primer set was developed to amplify a 338‐bp DNA fragment at the junction of the NS2 and NS1 protein genes of HPV after alignment of eight sequences from different strains. Another internal positive control primer set produced a 139‐bp PCR fragment from the β‐actin gene by alignment of this gene from Litopenaeus vannamei, Fenneropenaeus chinensis and Penaeus monodon. The detection limits, tested using purified plasmids, for WSSV and HPV were 21.4 and 19.0 copies respectively. The optimum ratio for HPV, WSSV and β‐actin was 3:1:1, with an optimum annealing temperature of 57°C. Field test of the multiplex PCR with 170 L. vannamei individuals from 17 aquaculture farms showed 41.8% coinfection with WSSV and HPV, and 40.0% and 3.5% single infection with WSSV and HPV respectively. No virus‐free shrimp farm was found. Ten wild catch F. chinensis individuals showed 60% coinfection, and 40% were infected with HPV.  相似文献   

6.
7.
In June 2019, massive mortalities of cultured Penaeus vannamei occurred in a local farm in Hainan Province, China. The diseased shrimp displayed evident black gills. Three bacterial strains 20190611001, 20190611007 and 20190611022 were isolated from hepatopancreas and gills of the diseased shrimp and identified as Photobacterium damselae subsp. damselae based on the sequence analysis of 16S rRNA and toxR genes. These three isolates showed haemolytic activities. Of them, strain 20190611022 isolated from hepatopancreas was selected and processed for pathogenic analysis. The calculated median lethal dose (LD50) was 9.75 ± 4.29 × 105CFU/g (body weight) by challenging P. vannameivia reverse gavage. The diseased shrimp displayed enlarged hepatopancreatic tubules and sloughing of epithelial cells in tubular lumens. The strain 20190611022 was also characterized by the testing of API 20NE systems and antibiotic susceptibility. The results of disc diffusion test showed that strain 20190611022 was sensitive to chloramphenicol, compound sulfamethoxazole, cefoperazone, ceftriaxone, ceftazidime and cefuroxime. To our knowledge, this is the first report of isolation and characterization of Photobacterium damselae subsp. damselae from natural diseased P. vannamei. Our findings can serve as a basis for further studies of its pathogenicity and provide technological support for disease controlling in shrimp aquaculture.  相似文献   

8.
This study aimed to investigate the effects of adding crude extracts of the extracellular protein (Ex‐Pro) and intracellular polysaccharides (In‐Poly) of Vibrio alginolyticus to diets, at a dosage of 10 g/kg, on the growth, energy metabolism and WSSV (White Spot Syndrome Virus) resistance of Litopenaeus vannamei (initial weight, 0.88 ± 0.04 g/shrimp). Growth and survival rate were not significantly affected by the crude extracts (> 0.05). Shrimp fed Ex‐Pro crude extracts showed higher succinate dehydrogenase (SDH) activity in the hepatopancreas and muscle but lower lactate dehydrogenase (LDH) activity in the muscle (< 0.05). The activities of hexokinase (HK), pyruvate kinase (PK), LDH and SDH in the hepatopancreas and the activity of SDH in the muscle were significantly increased by feeding In‐Poly crude extracts (< 0.05). In contrast, the content of fatty acid synthase (FAS) in the muscle was significantly reduced by the crude extracts (< 0.05). The contents of glucose and triglyceride and the activity of the electron transport system in the hepatopancreas were significantly increased by the crude extracts (< 0.05), and the WSSV resistance of the shrimp was increased. These results indicated that the Ex‐Pro and In‐Poly crude extracts of V. alginolyticus could affect energy metabolism, and there was a correlation between WSSV resistance and energy metabolism in L. vannamei.  相似文献   

9.
Stunted growth in pond‐reared Litopenaeus vannamei was observed in different farms located in Tamil Nadu and Andhra Pradesh, India. No mortality was associated with stunted growth. PCR assay on these samples revealed the presence of Enterocytozoon hepatopenaei (EHP) in stunted shrimp. Tissue distribution of EHP in naturally and experimentally infected shrimp was studied by PCR and histology. Histological examination revealed the presence of EHP in hepatopancreas and gut, but not in other organs. The PCR assay revealed the presence of EHP in all the organs tested in both naturally and experimentally infected shrimp. Healthy shrimp were challenged with E. hepatopenaei by intramuscular injection and oral route, and no mortality was observed in both routes after 30 days post‐challenge. Different developmental stages of the microsporidian parasite were observed in the hepatopancreatic epithelial cells. Biochemical parameters such as total protein, albumin, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase were measured in the haemolymph of naturally and experimentally EHP‐infected shrimp. All biochemical parameters mentioned were found to be significantly higher in EHP‐infected shrimp when compared to normal shrimp. This is the first report relating AST and ALT levels to EHP infection in naturally and experimentally infected shrimp.  相似文献   

10.
采用投喂感染白斑综合征病毒(White Spot Syndrome Virus,WSSV)对虾肌肉的方式,对养殖克氏原螯虾(Procambarus clarkii)进行人工感染,以确定WSSV对养殖克氏原螯虾的易感性。结果发现,投喂病虾感染组螯虾的死亡率达到90%,而对照组未出现死亡。采用PCR对试验组螯虾的肌肉进行WSSV检测,发现投喂感染组的阳性检出率为100%,对照组的阳性检出率均为0。PCR检测结果发现,濒死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏六种组织的PCR结果均为WSSV阳性,而对照组的各组织检测结果均为阴性。组织切片的光镜观察也证实,濒死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏及血淋巴等组织均发生了不同程度的病变。  相似文献   

11.
To determine if exposure to a sublethal mixture of metals (Cd, Cu, Fe, Mn, Pb and Zn) increases susceptibility to White spot syndrome virus (WSSV) infection, Litopenaeus vannamei juveniles were fed WSSV‐infected shrimp tissues after 21 days of exposure to the metal mixture (WS‐MM treatment). Other treatments consisted of shrimp not exposed to metals and fed infected tissues (WS), and shrimp fed healthy tissues and exposed (MM) or not exposed to metals (C). The presence of viral DNA and inclusion bodies was detected at 32 hr postinfection (hpi) in the stomach epithelium of shrimp from the WS treatment, and eight hours later in shrimp from the WS‐MM treatment, possibly because of an initial negative effect of metals in viral replication. At 40 hpi, the severity of infection represented by the histopathological index increased in both WS and WS‐MM treatments, and values were higher in WS‐MM than in WS shrimp at the end of the experiment. From 56 hpi to the end of experiment, total hemocyte counts were lower in both WS‐MM and WS treatments, and concentrations were particularly low in WS‐MM shrimp. Conversely, phenoloxidase activity was higher in the WS‐MM treatment from 32 to 56 hpi, suggesting a possible role of the prophenoloxidase (proPO) system in the antiviral defense against WSSV. The presence of heavy metals at sublethal concentrations may increase shrimp susceptibility to WSSV; this is supported by a decrease in circulating hemocytes, an increase in the humoral response, and the development of a higher number of WSSV inclusion bodies.  相似文献   

12.
WSSV has caused great losses to the global shrimp industry in recent years. This virus can infect shrimps asymptomatically. However, once the clinical signs are developed, mortalities can reach 100% in 3-10 days. PCR has been extensively used to detect WSSV in a specific and sensitive manner. Nested PCR is even more sensitive than single-step PCR and had been used for the detection of WSSV in asymptomatic populations. In this work, a detailed monitoring of WSSV by nested PCR in shrimp commercial ponds in Guasave County, State of Sinaloa, Mexico, is presented. Five ponds from two different farms were monitored for growth and presence of WSSV. At the beginning of the culture, ponds from both farms showed no or very slight WSSV presence. A 3-day period of rain occurred at both farms 10 and 14 weeks of culture for farms 1 and 2, respectively. At this time, WSSV was widely distributed in the shrimp populations of farm 1 according to nested-PCR data, although no visual symptoms were observed. In ponds of farm 2, WSSV was present at low level. However, the number of PCR-positive groups was drastically increased in both farms by nested and single-step PCR. Abrupt fluctuations in temperature and salinity were documented in farm 2 after the rain, which may have contributed to the increasing of viral load in the pond's shrimp populations. Twelve days after the rain period, estimated mortalities of 80% occurred in farm 1. Nevertheless, the study ponds at farm 2 culture continued normally for three more weeks and were harvested successfully (52% and 67% of survival for ponds 1 and 2, respectively). The removal of 40% and 50% of shrimp population 2-4 days after the raining period may have contributed to the thriving of the cultures. Analyses of the presence of WSSV in individuals of both sexes indicated that there is no preference for this virus to infect male or female shrimp. Also, no differences in weight were found between WSSV infected and non-infected individual shrimps, as well as nested-PCR positive against single-step PCR positive organisms. Nested PCR is more useful to monitor shrimp cultures than single-step PCR since it allows knowing how widely distributed the virus is in asymptomatically populations.  相似文献   

13.
14.
White spot disease is caused by a highly virulent pathogen, the white spot syndrome virus (WSSV). The disease is usually triggered by changes in environmental parameters causing severe losses to the shrimp industry. This study was undertaken to quantify the relative WSSV load in shrimp exposed to ammonia, using a TaqMan‐based real‐time PCR, and their subsequent susceptibility to WSSV. Shrimp were exposed to different levels of total ammonia nitrogen (TAN) (8.1, 3.8 and 1.1 mg L?1) for 10 days and challenged with WSSV by feeding WSSV‐positive shrimp. WSSV was detected simultaneously in haemolymph, gills and pereopods at four hours post‐infection. The TaqMan real‐time PCR assay showed a highly dynamic detection limit that spanned over 6 log10 concentrations of DNA and high reproducibility (standard deviation 0.33–1.42) and small correlation of variability (CV) (1.89–3.85%). Shrimp exposed to ammonia had significantly higher (P < 0.01) WSSV load compared to the positive control, which was not exposed to ammonia. Shrimp exposed to 8.1 mg L?1 of TAN had the highest (P < 0.01) WSSV load in all three organs in comparison with those exposed to 3.8 and 1.1 mg L?1 of TAN. However, haemolymph had significantly higher (P < 0.01) viral load compared to the gills and pereopods. Results showed that shrimp exposed to ammonia levels as low as 1.1 mg L?1 (TAN) had increased susceptibility to WSSV.  相似文献   

15.
Determination of differentially expressed protein profile is necessary to understand the host response to viral infection. Proteomics can be applied as a tool to examine white shrimp Litopenaeus vannamei molecular responses against white spot syndrome virus (WSSV) infection, thus enabling development of effective strategies to reduce their impact on farms. In the present study, specific pathogen-free shrimp was tested against WSSV infection under several time intervals. Shrimps were submitted to a viral load of with 5.5 × 106 viral copies in 100 μL/shrimp. The monitoring of infection was performed in intervals of 6, 12, 24, 48 and 72 h after infection. The analysis was realized using 2-DE, and differentially expressed proteins were identified by MALDI-TOF mass spectrometry (MS) peptide mass fingerprint (PMF). Between the differentially expressed proteins found in the infected animals, the most important were identified as caspase-2, ubiquitin and F1-ATP synthase. They are interesting candidates for biomarkers because could be related to the beginning of apoptosis process. The differentially expressed protein profile creates a new paradigm in the analysis of L. vannamei shrimp molecular response to WSSV infection and in virus–host relationship. Furthermore, it proposes potential biomarkers that allow strategies both selecting less susceptible individuals and reducing the impact of viruses on farms.  相似文献   

16.
Asian shrimp farming industry has experienced massive production losses due to a disease caused by toxins of Vibrio bacteria, known as early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) for the last 5 years. The disease can cause up to 100% cumulative pond mortality within a week. The objective of this study was to identify factors associated with AHPND occurrence on shrimp farms. A case–control study was carried out on shrimp farms in four provinces of Thailand. Factors related to farm characteristics, farm management, pond and water preparation, feed management, post‐larvae (PL) shrimp and stock management were evaluated. Multivariable logistic regression analysis identified factors affecting AHPND occurrence at the pond level. Chlorine treatment, reservoir availability, use of predator fish in the water preparation, culture of multiple shrimp species in one farm and increased PL stocking density contributed to an increased risk of AHPND infection, while delayed first day of feeding, polyculture and water ageing were likely to promote outbreak protection. Additionally, the source of PL was found to be associated with AHPND occurrence in shrimp ponds, which requires further study at the hatchery level. Identification of these factors will facilitate the development of effective control strategies for AHPND on shrimp farms.  相似文献   

17.
李忠帅  马甡  单洪伟  王腾  肖威 《水产学报》2021,45(11):1825-1834
为探究亚硝态氮胁迫下凡纳滨对虾[体长为(6.8±0.3) cm,体质量为(4.0±0.6) g]体内亚硝态氮的时空分布与能量代谢相关酶活性的响应,实验设置0(对照组)、0.8、4.0和8.0 mmol/L 4个处理组,进行持续96 h的亚硝态氮胁迫实验和12 h的恢复实验。结果显示,凡纳滨对虾死亡率与胁迫浓度呈现显著的正相关性。胁迫6 h内,亚硝态氮在凡纳滨对虾鳃、血淋巴、肠道、肝胰腺和肌肉组织中明显积累,且积累量与胁迫浓度呈现正相关。相同胁迫浓度组,亚硝态氮在对虾鳃中积累最多,肌肉中最少,鳃中的积累量约为肌肉的3倍。Na~+-K~+-ATP酶活性在0.8和4.0 mmol/L组对虾肝胰腺和肌肉中显著升高,而在8.0 mmol/L组的肌肉中显著降低。胁迫各组对虾肝胰腺AMPK活性显著上升,且与胁迫浓度呈现正相关性。恢复期间,除血淋巴(8.0 mmol/L组)外,各组织中亚硝态氮1 h恢复效率均超过50%,且肝胰腺和鳃的恢复效率最高,达到74%以上。血淋巴、鳃、肠道中亚硝态氮恢复到对照组水平的时间最短,均在6 h以内,而水体中亚硝态氮含量显著升高。以上研究表明,胁迫下亚硝态氮会在对虾组织中迅速积累,并引起能量代谢进程的加快;胁迫解除后,积累在体内的亚硝态氮能够迅速排出体外,以减轻毒性影响。本研究结果将为缓解亚硝态氮对养殖对虾毒性效应的研究提供参考。  相似文献   

18.
White spot syndrome virus has been a threat to the global shrimp industry since it was discovered in Taiwan in 1992. Thus, shrimp-producing countries have launched regulations to prevent import of WSSV-infected commodity shrimp from endemic areas. Recently, cooked shrimp that is infected with WSSV tested positive by PCR. However, there is no study to determine the infectivity of WSSV in cooked shrimp that tested positive by PCR. In the present study, WSSV-infected shrimp were cooked at boiling temperature for different times including 0, 1, 3, 5, 10 and 30 min. Upon exposure to boiling temperature, WSSV-infected shrimp were fed to SPF shrimp (Litopenaeus vannamei). The result showed experimentally challenged shrimp from 0-min treatment (positive control) indeed got infected with WSSV. However, experimentally challenged shrimp that were fed tissues boiled at 1, 3, 5, 10 and 30 min were not infected with WSSV. Mortality data showed that only the positive control (0-min) treatment displayed high mortality, whereas no mortality was observed in any other treatment category. These findings suggest that cooking shrimp at boiling temperature for at least 1 min might prevent any potential spread of WSSV from endemic countries to other geographical areas where WSSV has not yet been reported.  相似文献   

19.
Infectious hypodermal and haematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) are two widespread shrimp viruses. The interference of IHHNV on WSSV was the first reported case of viral interference that involved crustacean viruses and has been subsequently confirmed. However, the mechanisms underlying the induction of WSSV resistance through IHHNV infection are practically unknown. In this study, the interference mechanisms between IHHNV and WSSV were studied using a competitive ELISA. The binding of WSSV and IHHNV to cellular membrane of Litopenaeus vannamei was examined. The results suggested that there existed a mutual competition between IHHNV and WSSV for binding to receptors present on cellular membrane of L. vannamei and that the inhibitory effects of WSSV towards IHHNV were more distinct than those of IHHNV towards WSSV.  相似文献   

20.
The white spot syndrome virus (WSSV) remains the most devastating viral pathogen of shrimp culture worldwide. Gene silencing by RNA interference (RNAi) using double stranded RNA (dsRNA) has been considered a powerful tool for conferring protection against WSSV when viral genes are silenced, as documented in several shrimp species. However, this effect is not long lasting. Our results provide the first evidence that long‐term silencing of the LvRab7 endogen produced antiviral effect against WSSV, which endured at least 21 d after dsRNA treatment (dat). Until now, the most efficient way to implement RNAi with dsRNA into the shrimp is by injection. Consequently, its application to broodstock in hatcheries is possible, minimizing the risk of vertical transmission of the virus. We show that the expression of Rab7 in hemocytes is lowest at 2 dat and finally recovers to basal status. In contrast, in gills and pleopods, gene expression silencing continued for at least 21 d. We challenged Litopenaeus vannamei broodstock with WSSV at 7, 14, or 21 dat reaching mortality rates of 0, 40, and 27%, respectively. In conclusion, the LvRab7 gene silencing is progressive and effective against WSSV. However, further studies are necessary to elucidate the functions of Rab7 in shrimp cells before applying this methodology at a commercial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号