首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6–14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.  相似文献   

2.
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3 content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

3.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   

4.
The effect of Na+ ion concentration on the crystalline phase composition and morphology of xonotlite crystals prepared in a CaO-SiO2-H2O system via hydrothermal synthesis was analyzed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that Na+ ion concentration has a significant impact on the composition and morphology of crystalline phases in the products under the initial conditions of a molar ratio of CaO/SiO2 of 1.0 and a reactant concentration of 0.05 mol·L?1 at 225°C for 15 h. The main crystalline phase in the products has a phase transition from xonotlite to pectolite, and the morphology changes from fibrous to broomlike shape with the Na+ ion concentration increasing. Therefore, the content of Na2O in the raw material should be less than 5wt% for preparing pure xonotlite crystals via hydrothermal synthesis in a CaO-SiO2-H2O system.  相似文献   

5.
以煅烧α-Al2O3粉、氧化铁为原料,采用MgO为添加剂,控制配料的Al2O3/Fe2O3的摩尔比为1、3、5,MgO引入量质量百分数分别为2%、4%、6%,成型压强为100 MPa,烧结温度为1500℃、1550℃、1600℃,保温3小时可获得Al2O3-Fe2O3复合材料,对烧后试样了烧结与抗热震性能研究。结果表明:控制Al2O3-Fe2O3复合材料试样AF34-2的Al2O3/Fe2O3摩尔比为3,MgO引入量为4%,烧成温度为1550℃保温3小时的工艺条件,可以制备出较高致密度、常温抗折强度及抗热震性能的Al2O3-Fe2O3复合材料。该复合材料试样AF34-2的SEM显微结构照片显示出材料晶粒间结合紧密,形成具有直接结合的镶嵌结构。  相似文献   

6.
采用乙二醇为溶剂,成功合成了耦合系统Cu2O/Bi2MoO6,分别采用X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱分析(XPS)和透射电子显微镜(TEM)进行表征.样品的光催化活性通过在可见光下降解结晶紫来获得.结果表明,当Cu与Mo摩尔比为0.08,Cu2 O/Bi2MoO6展示出最高的光催化性能,仅在100 min结晶紫的降解率达到95.6%.同时,研究了耦合系统中Cu2O的量对其光催化活性的影响,并提出了合理的反应机制.  相似文献   

7.
研究了合金中Al含量的增加对铸态FeNiMnCr0.75Alxx=0.25,0.5,0.75,原子分数)高熵合金晶体结构及力学性能的影响。采用X射线衍射仪(XRD)和透射电子显微镜(TEM)对合金的微观结构及形貌进行分析,采用维氏硬度计和MTS万能试验机测试合金的硬度和室温压缩性能。试验结果表明,铸态下,FeNiMnCr0.75Alx高熵合金均由bcc和fcc两种晶体结构的相构成。随着Al含量的增加,合金中bcc结构的相的相对含量逐渐增加,导致硬度和压缩屈服强度也随之升高,应变量降低;且Al含量的增加最终也促使合金中无序bcc结构的相逐渐转变为Ni:(Mn+Al)=1:1(原子分数比)型有序bcc结构的相。  相似文献   

8.
Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200°C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2??6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).  相似文献   

9.
SiO_2纳米颗粒稳定的泡沫体系驱油性能研究   总被引:1,自引:1,他引:0  
利用Warning Blender方法测定SiO2+SDS泡沫体系的泡沫性能,确定SiO2纳米颗粒的最佳使用浓度,并研究不同温度和矿化度对泡沫性能的影响。利用岩心驱替实验装置对比SDS和SiO2+SDS两种不同泡沫体系对岩心的封堵、调剖和驱油性能。利用微观可视化玻璃刻蚀模型,对比水驱、SDS泡沫体系以及SiO2+SDS泡沫体系对盲端油的驱替效果。室内实验结果表明,SiO2+SDS泡沫体系比单一SDS泡沫体系具有更强的稳定性,能够明显提高泡沫的封堵、调剖及驱油能力,增加盲端油的驱替效果。  相似文献   

10.
为研究电渗对土的化学成分及矿物的影响,以高岭土为试样进行室内电渗固结试验。取一维电渗固结试验前后的土样及排出水样,采用X射线衍射及X射线荧光光谱分析测定土样的矿物组成及化学成分,通过ICP-MS测定水样的化学成分。土样及排出水的化学成分变化以及电渗过程中不同元素的迁移现象表明:高岭土的主要矿物成分中,地开石含量的变化幅度较大,而石英、高岭石、珍珠陶土的变化幅度很小;土体的主要化学成分SiO_2、Al_2O_3经过电渗作用后没有明显变化,变化幅度较大的化学成分为CaO、MgO、Na_2O、K_2O,其中CaO的变化明显强于其他成分;Na、K容易以离子形式发生迁移流入水中,Ca、Mg则反应生成氢氧化物沉淀而不易被检测出来,表现为"消失"。  相似文献   

11.
In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced withα-Al2O3 ceramic by a novel milling technique, called ...  相似文献   

12.
In pyrometallurgical process, Al-and Si-bearing minerals in iron and aluminum ores are easily transformed into sodium aluminosilicates in the presence of Na2O constituents, which alters the leaching behaviors of Al2O3 and SiO2. It was confirmed that sodium aluminosilicates with different phase compositions synthesized at various roasting conditions were effectively digested in the alkaline digestion process. Under the optimum conditions at temperature of 100-120℃, liquid-to-solid ratio (L/S) of 10:2 mL/g, caustic ratio of 4, and Na2O concentration of 240 g/L, the actual and relative digestion ratio of Al2O3 from the synthesized sodium aluminosilicates reached maximums of about 65% and 95%, respectively, while SiO2 was barely leached out. To validate the superior digestion property of sodium aluminosilicate generated via an actual process, the Bayer digestion of an Al2O3-rich material derived from reductive roasting of bauxite and comprising Na1.75Al1.75Si0.25O4 was conducted; the relative digestion ratio of Al2O3 attained 90% at 200℃.  相似文献   

13.
Nb_2O_5-TiO_2复合氧化物结构与光催化性能研究   总被引:1,自引:0,他引:1  
采用共沉淀法制备Nb2O5-TiO2复合氧化物,通过XRD、LRS和UV-vis DRS等方法考察Nb/Ti原子比和焙烧温度对Nb2O5-TiO2复合氧化物结构的影响,以水体中苯酚的降解为探针反应考察复合氧化物的光催化活性.结果表明,Nb2O5-TiO2复合氧化物结构与Nb/Ti原子比和制备温度有关.随着Nb5+进入TiO2晶格,在可见光区域形成一新的吸收带,该吸收带强度随Nb/Ti原子比和焙烧温度变化,当焙烧温度高于973 K时,可见光区域吸收带消失.低Nb/Ti原子比下,Nb5+对TiO2由锐钛矿相向金红石相转变具有抑制作用,而高的Nb/Ti原子比下Ti4+对Nb2O5晶相结构具有导向作用.复合物对水体中苯酚的光催化降解活性随着Nb/Ti原子比增加而降低.  相似文献   

14.
采用溶胶-凝胶法制备(CoFe2O4x/(SiO21-x纳米复合材料. 利用X射线衍射(XRD)和振动样品磁强计(VSM)研究样品结构、 晶粒尺寸及磁性. 结果表明, 随SiO2含量增加, 样品的晶粒尺寸减小, 比饱和磁化强度和矫顽力降低.   相似文献   

15.
In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.  相似文献   

16.
Using coal fly ash slurry samples supplemented with different amounts of Al_2O_3,we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach,which is a popular method suitable for industrial application.The microstructure,phase composition,and compressive strength of the sintered samples were investigated.Mullite was identified in all of the prepared materials by X-ray diffraction analysis.The microstructure and compressive strength were strongly influenced by the content of Al_2O_3.As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40,the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased.A further increase in the Al_2O_3 content resulted in a decrease in the compressive strength of the sintered samples.The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

17.
A mechanical activation process was introduced as a facile method for producing nickel oxide nanopowders. The precursor compound Ni(OH)2-NiCO3-4H2O was synthesized by chemical precipitation. The precursor was milled with NaCl diluent. A high-energy ball milling process led to decomposition of the precursor and subsequent dispersal in NaCl media. Nickel oxide nanocrystalline powders were produced by subsequent heat treatment and water washing. Milling rotation speed, milling time, ball-to-powder ratio (BPR), and nickel chlo-ride-to-precursor ratio were introduced as influential parameters on the wavelength of maximum absorption (λmax). The effects of these pa-rameters were investigated by the Taguchi method. The optimum conditions for this study were a milling rotation speed of 150 r/min, a mill-ing time of 20 h, a BPR of 15/1, and a NaCl-to-powder weight ratio (NPR) of 6/1. In these conditions,λmax was predicted to be 292 nm. The structural properties of the samples were determined by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry.  相似文献   

18.
To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows: CaO 27%–33%, SiO2 42%–51%, Al2O3 11%–14%, MgO 6%–8%, and Na2O+K2O 1%–4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content; however, a continuous increase in slag content induces the crystallization of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bending strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.  相似文献   

19.
LA-ICP-MS zircon U-Pb dating and geochemical data for the Late Paleozoic volcanic rocks from eastern and southeastern margins of the Jiamusi Massif are presented to understand the regional tectonic evolution. Zircons from eight representative volcanic rocks are euhedral-subhedral in shape and display striped absorption and fine-scale oscillatory growth zoning as well as high Th/U ratios (0.33-2.37), implying a magmatic origin. The dating results show that the Late Paleozoic volcanic rocks in the study area can be divided into two stages, i.e., the Early Permian (a weighted mean 205^Pb/238^U age of 288 Ma) and the Middle Permian volcanisms (a weighted mean 205^Pb/238^U age of 268 Ma). The former is composed mainly of basalt, basaltic-andesite, andesite and minor dacite. They are characterized by low SiO2 contents, high Mg^# (0.40-0.59), enrichment in Na (Na2O/K2O = 1.26-4.25) and light rare earth elements (LREEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), indicating that an active continental margin setting could exist in the eastern margin of the Jiamusi Massif in the Early Permian. The latter consists mainly of rhyolite and minor dacite with high SiO2 (77.23%-77.52%), low MgO (0.11%-0.14%), enrichment in 1(20 (Na2O/K2O ratios 〈 0.80) and Rb, Th, U and depletion in Eu, Sr, P and Ti, implying a crust-derived origin. Therefore, it is proposed that the Middle Permian volcanic rocks could have formed under the collision of the Jiamusi and the Khanka Massifs.  相似文献   

20.
The effect of F, K, and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD). It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering. Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction. The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point. In the sintering process, CaF2 and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2, so the formation of ferrites, Na2O·Fe2O3, and 2CaO·Fe2O3 is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号