首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
软岩隧道锚杆支护作用的模型试验研究   总被引:3,自引:1,他引:2  
 随着公路隧道的发展,隧道稳定性日益成为设计和施工的首要问题。根据重庆—长沙公路共和隧道围岩实际情况,在真三轴试验机上进行隧道在毛洞和不同支护条件下的模型试验,试验反映了隧道失稳的全过程并记录了各个部位的应变值,对不同工况下围岩的应力变化规律进行分析,结果表明:围岩的径向和切向应力均是随荷载的增加而增加的;在同级荷载下,支护后的围岩径向和切向应力要高于支护前;径向应力随着离洞壁距离增大而增大,而切向应力在洞壁上应力集中,随后随着离洞壁距离的增大而减小,最后趋于稳定。锚杆使得围岩的稳定性大大提高,且长锚杆的支护效果要优于短锚杆。  相似文献   

2.
为了研究岩石应变软化、剪胀性质、中间主应力和拉压不等特性对围岩松动圈的影响,基于改进双剪统一强度理论,得到了隧道围岩松动圈半径、围岩应力及洞壁位移的解析表达式。通过与已有方法计算结果的对比,验证了该方法的可行性,并进一步分析了中间主应力大小以及软化程度对结果的影响。研究结果表明:(1)随着软化模量的降低,隧道围岩塑性区、松动区(圈)半径以及洞壁位移均逐渐减小;(2)中间主应力大小对隧道围岩弹塑性行为具有一定的影响,随着中间主应力系数b的增大,围岩的切向应力在塑性软化区、破碎区内变大,而在弹性区内减小,围岩的径向应力在3个区域内均增大;(3)隧道洞壁位移随着中间主应力系数b的增大而减小;(4)考虑中间主应力的影响以及围岩软化的程度,能够充分发挥围岩的强度潜能,合理指导隧道布置、支护设计与施工。该结果为隧道围岩松动破裂分析提供了理论依据,具有一定的工程参考价值。  相似文献   

3.
基于考虑应变软化特性的深埋隧道弹塑性解,采用锚杆中性点理论,系统地分析高地应力软岩隧道短锚杆支护失效机制,并论证高地应力软岩隧道中对锚杆长度进行加长的必要性:一方面增大锚固段的围压以提高黏结强度,另一方面增大锚杆头部和尾部处的围岩位移差以提高锚杆对围压的锚固效用。将高密度支护模式的短锚杆等效为复合岩体,同时将长锚杆对围岩的锚固作用考虑为作用在隧道洞壁处的等效支护力,建立隧道长、短锚杆联合支护力学模型,考虑锚杆和围岩的相互作用,得到长、短锚杆联合支护后的围岩特征曲线。通过对比每延米隧道锚杆用量相同情况下,普通短锚杆支护和长、短锚杆联合支护状态下的围岩特征曲线,说明了长、短锚杆联合支护策略对高地应力软岩隧道变形控制的有效性。该长、短锚杆联合支护力学模型考虑了长锚杆与围岩的相互作用,为高地应力软岩隧道长锚杆支护长度的设计提供了一种计算方法。  相似文献   

4.
针对软弱岩体中隧道开挖过程中出现的塌方破坏问题,通过室内地质力学模型试验和数值模拟,对有、无锚杆支护情况下围岩的渐进性破坏过程、岩体地表变形以及岩体内部的应力变化规律进行了对比分析,所得结论如下所述:①隧道开挖使得上覆岩层荷载向隧洞左、右两侧转移,拱腰以下岩体往往率先剪切破坏,锁脚锚杆可有效制止岩体初始剪切破坏;②围岩破坏自洞周逐渐向岩体深部发展,沿与水平面夹角为45°+φ/2的方向产生两个滑动面,并在洞顶形成一自然平衡拱,锚杆支护可有效减小岩体塌落范围;③锚杆的存在大大改善了围岩的应力状态,不仅提高了拱腰岩体剪切起裂荷载值,而且还使得拱顶岩体在破坏前可承担更大的上覆荷载;④塌落区内的岩体切向应力呈"跌落式"下降,此特征可用于判断岩体塌落范围及为隧道塌方预警服务。  相似文献   

5.
将地应力释放的等效节点力作为外荷载加载在开挖边界上,利用有限元软件Marc分别计算了软弱岩体和中硬岩体隧洞开挖在锚杆支护前后的位移和应力情况,通过对加锚前后岩体进行位移与应力分析,研究分析了锚杆加固对岩体隧洞开挖变形控制的影响。在锚杆加固作用下,径向位移明显减小并向远离洞壁方向移动,靠近洞壁的地方位移明显减小,可以认为锚杆支护的主要作用之一是控制围岩的变形和发展;锚杆对软岩的变形控制效果更明显一些。  相似文献   

6.
长大公路隧道通风竖井通常建设在地应力作用的岩体区域,地应力状态是影响竖井工程稳定性最重要的因素之一。为探明高地应力状态对深大竖井围岩的应力演化和变形规律的影响,依托米仓山特长隧道通风竖井工程,采用数值模拟对不同应力系数的竖井施工过程进行分析,研究了不同应力条件下大断面竖井沿不同深度的围岩应力特征及径向位移规律。研究结果表明:相差较大地应力系数对围岩位移分布规律产生较大影响;围岩径向位移与围岩级别及竖井深度呈正相关性,围岩级别变差比竖井深度增大对围岩径向位移的影响更为明显;但当竖井深度超过200 m时,随地应力系数增大竖井径向位移速率急剧增大;不同围岩级别条件下随竖井深度和应力系数的增大,径向应力和切向应力都呈增大趋势,但增大趋势较平缓;研究成果可为类似竖井工程的科研、设计和施工提供参考。  相似文献   

7.
锚杆对应力波传播影响的有限元分析   总被引:7,自引:0,他引:7  
为了获得隧道围岩中应力波的传播特性及支护结构锚杆对应力波传播的影响,通过对爆破荷载模式的分析,得到了的爆破荷载计算的改进模式,并计算了朝东岩隧道开挖中的Ⅳ围岩类型下的爆破荷载,并以爆破荷载为荷载输入,对隧道围岩无支护及有支护情况下的应力波传播特性进行了有限元数值模拟,分析结果表明:在近距离的波传播中,计算结果具有很好的规律性;锚杆对应力波的传播衰减作用明显,其关系可用指数函数来拟合;爆破荷载作用下围岩周边各点的速度是各不相同的,且相差比较大,建议在设计支护系统时,可采用不对称的支护系统。  相似文献   

8.
为研究爆炸荷载效应对深部围岩分区破裂的影响,以淮南矿区丁集煤矿高地应力深部巷道为原型,借助胶结砂相似材料和深部巷道围岩破裂机制与支护技术模拟试验装置,在高轴地应力条件下开展深部围岩爆破开挖三维相似模型试验。模型试验结果表明:爆炸应变波信号包含压应变和拉应变,但以初始压应变为主,其随传播距离增大迅速衰减。爆炸荷载在洞壁附近产生了大量的微裂纹,导致其力学性能劣化和完整性降低,同时引起地应力的调整。轴向超载完毕,拱顶、侧墙和底板部位径向拉应变随距洞壁距离增大呈现出波峰与波谷间隔分布的波浪变化;在高轴地应力作用下,爆破荷载产生的微裂纹扩展、贯通,形成宏观破裂区,模型巷道侧墙围岩最先断裂破坏,随后是底板围岩,拱顶围岩最晚断裂,产生了明显的分区破裂现象。  相似文献   

9.
超前导洞法是开挖隧道前在所在断面提前施作小导洞从而释放应力的一种方法。本文研究导洞完成后圆孔扩挖过程中隧道内各层支护的受力变形。以兰渝铁路木寨岭隧道岭脊段为研究对象,从实际工程布设测点获取数据,进行超前导洞应力释放效果分析、圆形扩挖施工各层变形分析、圆形扩挖先后行隧道施工相互影响分析,以及长锚杆和锚索受力变形分析。结果表明,超前导洞法对围岩应力和变形速率有一定控制作用;三层支护仍不足以长期控制变形发展,“三层初支+径向注浆+长锚杆+长锚索”支护系统施作完成后,满足设计施作第四层钢筋混凝土衬砌条件;木寨岭岭脊段在相同施工及支护参数条件下,施工的先后对变形的影响很小,地质条件是影响变形的主因;长锚杆形成系统承载后,整体受力明显减小,而锚索张拉后,短期锚固效果不明显。  相似文献   

10.
以在建的成都-兰州铁路杨家坪隧道为工程依托,选取条件基本相同的30m典型围岩区段为试验段,对普通锚杆、早强锚杆支护时的洞周位移、围岩与初支接触压力、型钢拱架应力及其锚杆轴力进行实测对比分析,探讨了早强锚杆在高地应力陡倾层状软岩隧道中的作用机制。结果表明:高应力软岩隧道中锚杆轴力为拉力,早强锚杆比普通锚杆轴力更大,可以使隧道洞周位移减小40%|早强锚杆使隧道边墙围岩压力和钢架拱顶应力减小,围岩压力分布和钢架受力趋于均匀|早强锚杆通过注浆材料深入围岩,可以提高围岩层面强度|及时发挥锚固作用,抑制了围岩渐进破坏过程,从而减小围岩塑性区|加长了锚杆的拉拔长度,减小围岩与初支接触压力,改善隧道支护的受力状况,有效地控制隧道变形。  相似文献   

11.
借助有限差分软件分析无衬砌隧道压力拱的应力分布以及压力拱的形成过程,根据压力拱形成过程中的应力、位移规律研究隧道衬砌的最佳施工时间。研究表明:应力重分布会导致隧洞周边围岩的切向应力增大,径向应力减小,影响范围约为5~6倍隧洞半径;压力拱的形成是一个过程,稳定性较差的围岩反复寻求自稳后有可能形成稳定压力拱,也有可能坍塌;对于稳定性较好的围岩,衬砌时间应选在稳定压力拱形成时;对于稳定性较差的围岩,应在开挖后及时施加衬砌,必要时还可超前支护,有助于围岩形成压力拱。  相似文献   

12.
连拱隧道围岩压力计算方法与动态施工力学行为研究   总被引:1,自引:0,他引:1  
由于双连拱隧道的多分部开挖支护的结构荷载转换过程多,围岩应力变化和围岩与结构相互作用关系复杂,目前在设计、施工中仍然存在一些问题:(1) 勘察设计围岩分类与施工揭露实际围岩级别常有差异,并难以实现及时变更.(2) 尚无满足连拱隧道特点的围岩压力理论,特别是在浅埋偏压条件下围岩荷载估计偏差较大.(3) 施工中经常出现支护失效、衬砌裂缝及渗漏泄水等工程安全、质量问题.针对连拱隧道中的问题,进行围岩压力计算方法和动态施工力学行为研究,主要研究成果有:(1) 对于连拱隧道,围岩塑性区受中墙及施工方案影响较小,主要与最终开挖跨度有关.在计算荷载时要考虑最不利工况,连拱隧道坑道宽度取整个连拱隧道的宽度是合理的,偏于安全的.(2) 应用比尔鲍曼理论求得塌落拱曲线方程,然后用作图法在连拱隧道外侧作一个切线与以地形的坡度求出的塌落拱曲线方程的切线相平行,两平行线的距离即为地形偏压临界覆盖厚度.运用此方法求得连拱隧道大跨度条件下的偏压连拱隧道地形偏压临界覆土厚度,为偏压连拱隧道设计提供可靠依据.(3) 针对连拱隧道断面远大于单线隧道,围岩压力大于按单线隧道宽度修正结果所出现的问题,提出对于大跨度双连拱隧道,在极浅埋、浅埋条件下,仍然分别采用全土柱理论荷载和谢家烋理论荷载;在深埋条件下,推荐双连拱隧道竖直地层压力采用适合双连拱大断面隧道特点的修正比尔鲍曼理论围岩压力计算公式.(4) 对于浅埋偏压连拱隧道,不仅要考虑非对称的地层主动荷载,还要调整浅埋侧地层被动荷载,提出浅埋偏压连拱隧道地层主动偏压荷载和被动不均匀荷载确定方法及地形偏压情况下隧道支护结构的合理计算方法,并求得不同坡率、不同围岩级别条件下浅埋侧土体的弹性抗力系数的合理取值,为设计中偏压连拱隧道采用荷载结构模式计算时浅埋侧土体的弹性抗力系数取值提供参考.(5) 在充分吸收国内外围岩分类经验的基础上,针对隧道施工期间的现场围岩判别特点与要求,提出一种现场围岩快速评价方法,该方法以定量与定性指标相结合,现场观察、量测及快速评价.另外针对隧道围岩实际力学指标难以获取的难题,提出应用围岩Q指标和现场点荷载强度推测围岩物理力学参数的方法,并结合围岩快速评价结果,综合确定隧道围岩实际力学指标.(6) 对于浅埋偏压连拱隧道,侧导洞应该先开挖深埋侧侧导洞,而主洞应该先开挖浅埋侧主洞;而对于非偏压连拱隧道,在围岩条件较好时主洞开挖可采用上下台阶法,且主洞开挖合理的工作面间距应约为2.0D~3.0D(D为单拱跨度);在中隔墙完成后,部分回填,使正洞初期支护能直接作用在中隔墙上,不仅有效提高支护整体刚度,还使中隔墙受力更合理,改善中隔墙受力状态.经富溪偏压连拱隧道工程施工与现场监测结果检验,提出的连拱隧道坑道宽度取值、偏压连拱隧道深浅埋分界、围岩主动压力与围岩被动压力计算方法、现场围岩级别快速评价以及施工方法正确合理,可为工程建设提供重要技术支持和经验.  相似文献   

13.
隧道径向锚钉-斜交锚杆复合支护技术研究   总被引:1,自引:0,他引:1  
基于长短锚杆组合支护理论,提出了一种隧道径向锚钉-斜交锚杆复合支护技术,该技术可提高支护结构的整体抗力,有利于缩小围岩塑性区半径,增加锚杆处于稳定围岩区的长度。为进一步研究锚钉和锚杆的组合长度,将隧道围岩划分为A、B和C三区,并把锚杆作用在围岩体内的剪应力简化为环向边界应力,运用厚壁圆筒弹塑性理论推导了锚钉和锚杆组合长度计算式。实例分析表明,0.8m(锚钉)和3.8m(锚杆)的组合长度可以使隧道塑性区半径降低28%,锚固盲区减小88.8%。可见,在隧道长短锚杆组合支护理论中,该计算方法对围岩锚固体长度参数设计有一定指导意义。  相似文献   

14.
锚杆支护方法在岩体加固工程中应用较为广泛,锚杆作为支护结构的核心应具有足够的安全度和耐久性.由于钢材易腐蚀,钢锚杆的耐久性受到极大的关注.玻璃纤维增强塑料(GFRP)锚杆是一种由树脂和玻璃纤维复合而成的新型加固材料,与钢筋锚杆相比,它具有较好的力学性能和耐腐蚀性能.通过现场原型试验,系统分析了不同围岩环境和受力条件下GFRP锚杆的抗拉特性,论证GFRP锚杆使用的适宜性,为GFRP锚杆的推广应用提供了较充分的基础数据.根据现场锚杆结构拉拔破坏性试验,研究了GFRP螺纹锚杆破坏机制和应力应变规律,为GFRP锚杆的工程应用提供了理论依据.试验结果表明,GFRP锚杆结构破坏形式有3种:杆体自由段脆性劈裂破坏、锚杆和砂浆界面剪切破坏及砂浆和围岩界面剪切破坏;GFRP锚杆的锚固机制因围岩风化程度不同而异;锚杆应力应变在锚固体内的传递深度随围岩风化程度的增加而增加;围岩风化程度越高,围岩和砂浆接触面强度较低,随着荷载的增加,围岩和砂浆界面出现剪切滑移破坏.  相似文献   

15.
 开展膏溶角砾岩隧道支护体系现场试验,研究无水段、高含水量段初期支护锚杆轴力、围岩压力、钢拱架应力及洞周位移、二次衬砌接触压力和钢筋应力。分析表明:高含水量比无水段初期支护受力增大约50%,而二次衬砌受力增长约30%;无水试验段拱腰锚杆主要受压,建议取消拱部系统锚杆,只打设拱部锁脚锚杆,及早封闭成环;高含水量段锚杆主要受拉,发挥拉拔力支护效果,建议锚杆参数不变;初期支护钢拱架架设能够立即承载,发挥支护作用明显。研究成果可为膏溶角砾岩地层隧道及类似工程的修建提供参考。  相似文献   

16.
 为研究锚固支护对钻爆法施工深部巷道围岩分区破裂的影响,采用深部巷道围岩破裂机制与支护技术模拟试验装置,开展高轴地应力条件下锚固支护深部巷道爆破开挖三维相似物理模型试验。爆破开挖、轴向超载完毕,模型巷道洞周围岩径向拉应变和径向压应力均呈现出波峰与波谷的波浪变化,与未支护模型巷道洞周径向拉应变变化规律相似,表明锚固支护模型巷道依然存在分区破裂的趋势。与未支护模型试验结果对比,锚杆和锚索联合支护的模型巷道在锚固支护部位未出现分区破裂现象,分析得出锚杆和锚索的联合作用可实现围岩应力的转移和重分布。研究结果表明,锚固支护对抑制深部巷道分区破裂具有重要的作用。  相似文献   

17.
 为研究不同施工工法和工艺组合条件下超大断面隧道穿越软弱破碎地层的围岩稳定性问题,以兰渝线两水隧道为背景,开展铁路双线隧道在软弱破碎地层中超大断面开挖的大比尺三维模型试验,真实再现台阶法支护开挖、台阶法和全断面毛洞施工的全过程。首先,基于现场较为破碎的千枚岩岩样基本力学参数室内试验结果,以松香、铁晶粉以及聚四氟乙烯棒等材料为原料,研制兼具低强度和弱黏结特性的软弱破碎围岩相似材料和初喷混凝土、锚杆等支护结构的相似材料,在最新研制的可实现三面均匀同步加载的大型三维地质力学模型试验台架上模拟隧道台阶法支护、全断面支护和全断面无支护施工的全过程,并采用光纤光栅传感器、电阻式应变计、多点位移计以及微型压力盒全程监测洞壁及其整数倍(0~3倍)洞径范围内围岩的应力、位移以及近区荷载的变化信息,分析不同施工过程中隧道围岩受力和变形的三维空间演化规律。研究结果表明:(1) 软弱破碎低强度和流变特性使围岩变形具有更强的时空效应,同时存在掌子面挤出变形、先行位移和后方位移3个时空演化过程;(2) 软弱破碎围岩变形的三维扰动深度一般在3倍洞径内,台阶法支护开挖扰动范围最小,全断面支护开挖次之,但后续长距离推进极易诱发围岩坍塌;(3) 台阶法较大断面开挖有利于控制收敛变形,减少10%~25%,沉降变形则相差不大,上台阶开挖过程是拱部围岩垂向荷载的急剧释放期,下台阶开挖是边墙围岩水平荷载的急剧释放期;(4) 台阶法支护开挖掌子面前方岩体扰动范围为0.5~1.0倍洞径,多属荷载集聚区,是软弱破碎围岩稳定加固的重点区域和最小边界范围;(5) 隧道断面围岩整体荷载释放过程存在3个典型变化阶段,即掌子面附近荷载集聚区、前方荷载弱集聚区和掌子面后方荷载释放区,及时施作支护可有效减弱掌子面前方围岩荷载的集聚程度和荷载峰值,使荷载峰值出现的位置滞后,有利于掌子面及其附近围岩的整体稳定。  相似文献   

18.
针对春季融雪期温度周期性变化导致砂浆岩石锚杆支护结构锚固性能劣化的现象,研究冻融循环对其锚固能力的影响。利用室内模型试验得到不同冻融循环周期下锚杆位移和锚固力的大小,以及锚杆应力、围岩应力、锚杆和砂浆交结面剪应力的变化,从锚杆荷载传递机制出发,研究冻融循环作用下锚杆的破坏模式和影响锚杆锚固性能的主要原因。研究结果表明:冻融循环使砂浆弹性模量和强度降低,加载端砂浆破坏提前,加快了荷载向锚杆深处的传递,锚杆深处应力及锚杆与砂浆交结面的剪应力增大。冻融循环作用下锚杆极限荷载降低,变形增大,且随着冻融周期的增加,荷载–位移曲线的拐点和钢筋滑移曲线的水平段出现提前,锚杆破坏时的极限荷载降低,变形增大。  相似文献   

19.
将冲击应力波进行合理简化,建立平面P波与圆形锚固巷道相互作用简化模型。结合算例,通过分析深部围岩径向应力、巷道表面切向应力、巷道表面径向位移以及深部围岩与巷道表面径向位移差等代表性指标,确定了重点支护位置,推导了重点支护位置的锚杆受力机制并提出了相应破坏类型及判据。结果表明:迎波侧与侧向位置是重点支护位置。迎波侧锚杆总应力是静载轴应力、锚杆振动的动应力和动载下围岩变形引起的附加应力的叠加,强冲击下迎波侧支护结构的破坏类型为单次瞬间摧垮破坏,围岩受压破裂,锚杆松动失去加固作用;循环弱冲击下的破坏类型为循环累积损伤破坏,受压围岩逐渐损伤致裂,锚杆反复受压、受拉直至松动,这进一步加剧围岩的损伤破裂,当承载拱强度降低到一定值后,一次小冲击就能诱发巷道冲击破坏。侧向位置锚杆总应力是静载轴应力、动载下围岩变形引起的附加应力的叠加,锚杆始终受拉,在强冲击下可能发生拉断破坏。通过相似模拟试验,较好地验证了理论分析结果,表明理论分析结果对工程实践具有一定的指导意义。  相似文献   

20.
冻融循环对砂浆岩石锚杆锚固力影响的试验研究   总被引:1,自引:0,他引:1  
 针对春季融雪期温度周期性变化导致砂浆岩石锚杆支护结构锚固性能劣化的现象,研究冻融循环对其锚固能力的影响。利用室内模型试验得到不同冻融循环周期下锚杆位移和锚固力的大小,以及锚杆应力、围岩应力、锚杆和砂浆交结面剪应力的变化,从锚杆荷载传递机制出发,研究冻融循环作用下锚杆的破坏模式和影响锚杆锚固性能的主要原因。研究结果表明:冻融循环使砂浆弹性模量和强度降低,加载端砂浆破坏提前,加快了荷载向锚杆深处的传递,锚杆深处应力及锚杆与砂浆交结面的剪应力增大。冻融循环作用下锚杆极限荷载降低,变形增大,且随着冻融周期的增加,荷载–位移曲线的拐点和钢筋滑移曲线的水平段出现提前,锚杆破坏时的极限荷载降低,变形增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号