首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prediction of tunneling-induced ground settlements is an essential task, particularly for tunneling in urban settings. Ground settlements should be limited within a tolerable threshold to avoid damages to aboveground structures. Machine learning(ML) methods are becoming popular in many fields, including tunneling and underground excavations, as a powerful learning and predicting technique. However, the available datasets collected from a tunneling project are usually small from the perspective o...  相似文献   

2.
For a tunnel driven by a shield machine, the posture of the driving machine is essential to the construction quality and environmental impact. However, the machine posture is controlled by the experienced driver of shield machine by setting hundreds of tunneling parameters empirically. Machine learning(ML) algorithm is an alternative method that can let the computer to learn from the driver’s operation and try to model the relationship between parameters automatically. Thus, in this paper, three...  相似文献   

3.
This study introduces a generic framework for geotechnical subsurface modeling, which accounts for spatial autocorrelation with local mapping machine learning(ML) methods. Instead of using XY coordinate fields directly as model input, a series of autocorrelated geotechnical distance fields(GDFs) is designed to enable the ML models to infer the spatial relationship between the sampled locations and unknown locations. The whole framework using GDF with ML methods is named GDF-ML. This framework is...  相似文献   

4.
The spatial information of rockhead is crucial for the design and construction of tunneling or underground excavation. Although the conventional site investigation methods (i.e. borehole drilling) could provide local engineering geological information, the accurate prediction of the rockhead position with limited borehole data is still challenging due to its spatial variation and great uncertainties involved. With the development of computer science, machine learning (ML) has been proved to be a promising way to avoid subjective judgments by human beings and to establish complex relationships with mega data automatically. However, few studies have been reported on the adoption of ML models for the prediction of the rockhead position. In this paper, we proposed a robust probabilistic ML model for predicting the rockhead distribution using the spatial geographic information. The framework of the natural gradient boosting (NGBoost) algorithm combined with the extreme gradient boosting (XGBoost) is used as the basic learner. The XGBoost model was also compared with some other ML models such as the gradient boosting regression tree (GBRT), the light gradient boosting machine (LightGBM), the multivariate linear regression (MLR), the artificial neural network (ANN), and the support vector machine (SVM). The results demonstrate that the XGBoost algorithm, the core algorithm of the probabilistic N-XGBoost model, outperformed the other conventional ML models with a coefficient of determination (R2) of 0.89 and a root mean squared error (RMSE) of 5.8 m for the prediction of rockhead position based on limited borehole data. The probabilistic N-XGBoost model not only achieved a higher prediction accuracy, but also provided a predictive estimation of the uncertainty. Thus, the proposed N-XGBoost probabilistic model has the potential to be used as a reliable and effective ML algorithm for the prediction of rockhead position in rock and geotechnical engineering.  相似文献   

5.
Predicting the tunneling-induced maximum ground surface settlement is a complex problem since the settlement depends on plenty of intrinsic and extrinsic factors. This study investigates the efficiency and feasibility of six machine learning (ML) algorithms, namely, back-propagation neural network, wavelet neural network, general regression neural network (GRNN), extreme learning machine, support vector machine and random forest (RF), to predict tunneling-induced settlement. Field data sets including geological conditions, shield operational parameters, and tunnel geometry collected from four sections of tunnel with a total of 3.93 km are used to build models. Three indicators, mean absolute error, root mean absolute error, and coefficient of determination the (R2) are used to demonstrate the performance of each computational model. The results indicated that ML algorithms have great potential to predict tunneling-induced settlement, compared with the traditional multivariate linear regression method. GRNN and RF algorithms show the best performance among six ML algorithms, which accurately recognize the evolution of tunneling-induced settlement. The correlation between the input variables and settlement is also investigated by Pearson correlation coefficient.  相似文献   

6.
Tunnel boring machine (TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself. In this study, deep recurrent neural networks (RNNs) and convolutional neural networks (CNNs) were used for vibration-based working face ground identification. First, field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions, including mixed-face, homogeneous, and transmission ground. Next, RNNs and CNNs were utilized to develop vibration-based prediction models, which were then validated using the testing dataset. The accuracy of the long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM) models was approximately 70% with raw data; however, with instantaneous frequency transmission, the accuracy increased to approximately 80%. Two types of deep CNNs, GoogLeNet and ResNet, were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation. The CNN models, with an accuracy greater than 96%, performed significantly better than the RNN models. The ResNet-18, with an accuracy of 98.28%, performed the best. When the sample length was set as the cutterhead rotation period, the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency. The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process, and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results.  相似文献   

7.
盾构施工不同中线问距对地表沉降的影响   总被引:1,自引:0,他引:1  
刘东 《山西建筑》2011,37(6):161-162
以成都地铁一号线桐梓林站至火车南站区间段为背景,采用FLAC3D数值模拟的手段,对成都市特有地质条件下双线盾构隧道施工不同中线间距引起的地表沉降进行了研究,得出了一些具有指导意义的结论。  相似文献   

8.
Pore pressure is an essential parameter for establishing reservoir conditions, geological interpretation and drilling programs. Pore pressure prediction depends on information from various geophysical logs, seismic, and direct down-hole pressure measurements. However, a level of uncertainty accompanies the prediction of pore pressure because insufficient information is usually recorded in many wells. Applying machine learning (ML) algorithms can decrease the level of uncertainty of pore pressure prediction uncertainty in cases where available information is limited. In this research, several ML techniques are applied to predict pore pressure through the over-pressured Eocene reservoir section penetrated by four wells in the Mangahewa gas field, New Zealand. Their predictions substantially outperform, in terms of prediction performance, those generated using a multiple linear regression (MLR) model. The geophysical logs used as input variables are sonic, temperature and density logs, and some direct pore pressure measurements were available at the reservoir level to calibrate the predictions. A total of 25,935 data records involving six well-log input variables were evaluated across the four wells. All ML methods achieved credible levels of pore pressure prediction performance. The most accurate models for predicting pore pressure in individual wells on a supervised basis are decision tree (DT), adaboost (ADA), random forest (RF) and transparent open box (TOB). The DT achieved root mean square error (RMSE) ranging from 0.25 psi to 14.71 psi for the four wells. The trained models were less accurate when deployed on a semi-supervised basis to predict pore pressure in the other wellbores. For two wells (Mangahewa-03 and Mangahewa-06), semi-supervised prediction achieved acceptable prediction performance of RMSE of 130–140 psi; while for the other wells, semi-supervised prediction performance was reduced to RMSE > 300 psi. The results suggest that these models can be used to predict pore pressure in nearby locations, i.e. similar geology at corresponding depths within a field, but they become less reliable as the step-out distance increases and geological conditions change significantly. In comparison to other approaches to predict pore pressures, this study has identified that application of several ML algorithms involving a large number of data records can lead to more accurate prediction results.  相似文献   

9.
Performance prediction of TBMs is an essential part of project scheduling and cost estimation. This process involves a good understanding of the complexities in the site geology, machine specification, and site management. Various approaches have been used over the years to estimate TBM performance in a given ground condition, many of them were successful and within an acceptable range, while some missing the actual machine performance by a notable margin. Experience shows that the best approach for TBM performance prediction is to use various models to examine the range of estimated machine penetration and advance rates and choose a rate that best represents the working conditions that is closest to the setting of the model used for the estimation. This allows the engineers to avoid surprises and to identify the parameters that could dominate machine performance in each case. This paper reviews the existing models for performance prediction of TBMs and some of the ongoing research on developing better models for improved accuracy of performance estimate and increasing TBM utilization.  相似文献   

10.
Based on data from the Jilin Water Diversion Tunnels from the Songhua River (China), an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine (TBM) cutter-head torque is presented. Firstly, a function excluding invalid and abnormal data is established to distinguish TBM operating state, and a feature selection method based on the SelectKBest algorithm is proposed. Accordingly, ten features that are most closely related to the cutter-head torque are selected as input variables, which, in descending order of influence, include the sum of motor torque, cutter-head power, sum of motor power, sum of motor current, advance rate, cutter-head pressure, total thrust force, penetration rate, cutter-head rotational velocity, and field penetration index. Secondly, a real-time cutter-head torque prediction model's structure is developed, based on the bidirectional long short-term memory (BLSTM) network integrating the dropout algorithm to prevent overfitting. Then, an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed. Early stopping and checkpoint algorithms are integrated to optimize the training process. Finally, a BLSTM-based real-time cutter-head torque prediction model is developed, which fully utilizes the previous time-series tunneling information. The mean absolute percentage error (MAPE) of the model in the verification section is 7.3%, implying that the presented model is suitable for real-time cutter-head torque prediction. Furthermore, an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling. Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that: (1) the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%, and both the coefficient of determination (R2) and correlation coefficient (r) between measured and predicted values exceed 0.95; and (2) the incremental learning method is suitable for real-time cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.  相似文献   

11.
The data-driven phenomenological models based on deformation measurements have been widely utilized to predict the slope failure time (SFT). The observational and model uncertainties could lead the predicted SFT calculated from the phenomenological models to deviate from the actual SFT. Currently, very limited study has been conducted on how to evaluate the effect of such uncertainties on SFT prediction. In this paper, a comprehensive slope failure database was compiled. A Bayesian machine learning (BML)-based method was developed to learn the model and observational uncertainties involved in SFT prediction, through which the probabilistic distribution of the SFT can be obtained. This method was illustrated in detail with an example. Verification studies show that the BML-based method is superior to the traditional inverse velocity method (INVM) and the maximum likelihood method for predicting SFT. The proposed method in this study provides an effective tool for SFT prediction.  相似文献   

12.
Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches.A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability.In the hybrid stacking ensemble approach,we used an artificial bee colony(ABC)algorithm to find out the best combination of base classifiers(level 0)and determined a suitable meta-classifier(level 1)from a pool of 11 individual optimized machine learning(OML)algorithms.Finite element analysis(FEA)was conducted in order to form the synthetic database for the training stage(150 cases)of the proposed model while 107 real field slope cases were used for the testing stage.The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix,F1-score,and area under the curve,i.e.AUC-score.The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble(AUC?90.4%),which is 7%higher than the best of the 11 individual OML methods(AUC?82.9%).Then,a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction.The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method.Finally,the importance of the variables for slope stability was studied using linear vector quantization(LVQ)method.  相似文献   

13.
This study has provided an approach to classify soil using machine learning. Multiclass elements of stand-alone machine learning algorithms (i.e. logistic regression (LR) and artificial neural network (ANN)), decision tree ensembles (i.e. decision forest (DF) and decision jungle (DJ)), and meta-ensemble models (i.e. stacking ensemble (SE) and voting ensemble (VE)) were used to classify soils based on their intrinsic physico-chemical properties. Also, the multiclass prediction was carried out across multiple cross-validation (CV) methods, i.e. train validation split (TVS), k-fold cross-validation (KFCV), and Monte Carlo cross-validation (MCCV). Results indicated that the soils' clay fraction (CF) had the most influence on the multiclass prediction of natural soils' plasticity while specific surface and carbonate content (CC) possessed the least within the nature of the dataset used in this study. Stand-alone machine learning models (LR and ANN) produced relatively less accurate predictive performance (accuracy of 0.45, average precision of 0.5, and average recall of 0.44) compared to tree-based models (accuracy of 0.68, average precision of 0.71, and recall rate of 0.68), while the meta-ensembles (SE and VE) outperformed (accuracy of 0.75, average precision of 0.74, and average recall rate of 0.72) all the models utilised for multiclass classification. Sensitivity analysis of the meta-ensembles proved their capacities to discriminate between soil classes across the methods of CV considered. Machine learning training and validation using MCCV and KFCV methods enabled better prediction while also ensuring that the dataset was not overfitted by the machine learning models. Further confirmation of this phenomenon was depicted by the continuous rise of the cumulative lift curve (LC) of the best performing models when using the MCCV technique. Overall, this study demonstrated that soil's physico-chemical properties do have a direct influence on plastic behaviour and, therefore, can be relied upon to classify soils.  相似文献   

14.
This study tried to explore the ground movement induced by triple stacked tunneling(TST) with different construction sequences. A case study in Tianjin, China was used to investigate the ground movement during the TST(upper tunneling(UT)). For this, a modified Peck formula was proposed to predict the surface settlement induced by TST. Next, three sets of finite element analyses(FEA) were used to compare the effects of construction sequences(i.e. UT, middle tunneling(MT), and lower tunneling(LT))...  相似文献   

15.
In the present study, a comparison between the new shallow tunneling method (STM) and the traditional pile and rib method (PRM) was conducted to excavate and construct subway stations in the geological conditions of Tehran. First, by selecting Station Z6 located in the Tehran Subway Line 6 as a case study, the construction process was analyzed by PRM. The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis, and it was within the allowable settlement limit of 30 mm. The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM. In the next stage, based on the numerical model validated by instrumentation data, the value of the ground surface settlement was investigated during the station excavation and construction by STM. The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM. The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face. Also, the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM, it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction.  相似文献   

16.
A method which adopts the combination of least squares support vector machine (LS-SVM) and Monte Carlo (MC) simulation is used to calculate the foundation settlement reliability. When using LS-SVM, choosing the training dataset and the values for LS-SVM parameters is the key. In a representative sense, the orthogonal experimental design with four factors and five levels is used to choose the inputs of the training dataset, and the outputs are calculated by using fast Lagrangian analysis continua (FLAC). The decimal ant colony algorithm (DACA) is also used to determine the parameters. Calculation results show that the values of the two parameters, γ and δ2 have great effect on the performance of LS-SVM. After the training of LS-SVM, the inputs are sampled according to the probabilistic distribution, and the outputs are predicted with the trained LS-SVM, thus the reliability analysis can be performed by the MC method. A program compiled by Matlab is employed to calculate its reliability. Results show that the method of combining LS-SVM and MC simulation is applicable to the reliability analysis of soft foundation settlement.  相似文献   

17.
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This study develops an ensemble learning-based method to predict the slope stability by introducing the random forest(RF) and extreme gradient boosting(XGBoost). As an illustration, the proposed approach is applied to the stability prediction of 786 landslide cases in Yunyang County, Chongqing, China. For comparison, the predictive performance of RF, XGBoost, support vector machine(SVM), and logi...  相似文献   

18.
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed.  相似文献   

19.
Blasting is a common method of breaking rock in surface mines. Although the fragmentation with proper size is the main purpose, other undesirable effects such as flyrock are inevitable. This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm, called kernel extreme learning machine (KELM), by which the flyrock distance (FRD) is predicted. Furthermore, the other three data-driven models including local weighted linear regression (LWLR), response surface methodology (RSM) and boosted regression tree (BRT) are also developed to validate the main model. A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing, burden, stemming length and powder factor data as inputs and FRD as target. Afterwards, the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools. Finally, the results verify that the proposed KELM model on account of highest correlation coefficient (R) and lowest root mean square error (RMSE) is more computationally efficient, leading to better predictive capability compared to LWLR, RSM and BRT models for all data sets.  相似文献   

20.
Water penetration and dripping in tunnels is almost always a significant problem which is usually solved with the help of a tunnel waterproofing drainage system mounted where drips and leaks are detected. Today’s drainage systems are made of foamed polyethene (PE) mats which are covered with shotcrete. These are relatively expensive, complex to install, sensitive to mechanical impact, and often have a much shorter expected lifetime than the tunnel. In this study, a new type of drainage, Rockdrain, was studied and compared with the present drainage system. The systems were evaluated with respect to technical, environmental, and economic aspects. A field test was performed with the Rockdrain system and compared with installation of a traditional system. Laboratory tests were performed on especially the different shotcrete layers used in the Rockdrain system. The environmental evaluation was performed by Life Cycle Assessment (LCA) and the economic evaluation was performed by Life Cycle Cost (LCC) analysis. The results indicate that the Rockdrain system has a good drainage function, is significantly cheaper than the current system, has a longer expected lifetime, is easier to install, and is less sensitive to mechanical impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号