首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new concept in reproductive endocrinology is that the status of the ovary as a glucocorticoid target organ alters with follicular development. Evidence for a physiological role of glucocorticoids in the regulation of ovarian folliculogenesis has been strengthened by the discovery that 11beta-hydroxysteroid dehydrogenase (11betaHSD) mRNA expression in human granulosa cells is developmentally regulated. In this study, we quantified the pattern of expression and investigated the cellular location of 11betaHSD type 1 (11betaHSD1), 11betaHSD type 2 (11betaHSD2), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) mRNAs during follicular maturation in rat ovary. Immature female rats received treatment with eCG to induce preovulatory follicular development or eCG followed by hCG to induce luteinization. 11betaHSD1, 11betaHSD2, GR, and MR mRNAs were all detectable by ribonuclease protection assay in ovarian total RNA. Treatment with eCG alone caused an approximately 8-fold increase in the ovarian level of 11betaHSD1 mRNA, which rose to approximately 30-fold after additional treatment with hCG. Equine CG alone did not measurably affect the ovarian 11betaHSD2 mRNA level, but additional treatment with hCG reduced it to 34% of the control level. Expression of GR mRNA was unchanged by any gonadotropin treatment, while MR mRNA was down-regulated. A similar pattern of 11betaHSD1, 11betaHSD2, GR, and MR mRNA expression was observed in isolated granulosa cells. These results provide direct experimental evidence that 11betaHSD genes are gonadotropically regulated in the rat ovary, including granulosa cells, and are consistent with a shift in glucocorticoid metabolism from inactivation (due to oxidation by 11betaHSD2) to activation (reduction by 11betaHSD1) during hCG-induced granulosa cell luteinization.  相似文献   

2.
In the rat, the enzyme 11beta-hydroxysteroid dehydrogenase 2 (11betaHSD2) converts the glucocorticoid corticosterone into receptor-inactive 11-dehydrocorticosterone, thereby allowing preferential access of aldosterone to mineralocorticoid receptors (MR). The present study examines the distribution of this enzyme by in situ hybridization, using a homologous complementary RNA probe for 11betaHSD2. 11betaHSD2 messenger RNA was detected in classic epithelial aldosterone target tissues (kidney, salivary glands, and colon), the female reproductive system (ovary, oviduct, uterus, and placenta), and the adrenals; levels in heart, testis, and liver were below the limits of detection. We interpret the finding of 11betaHSD2 expression in both classical MR-containing aldosterone target tissues and a variety of other tissue as evidence that in the rat, the enzyme may play physiological roles in addition to that of excluding glucocorticoids from epithelial MR.  相似文献   

3.
Glucocorticoids play important roles in development and 'fetal programming'. Fetal exposure to excess glucocorticoids reduces birth weight and causes later hypertension. To investigate these processes further we have determined the detailed category of 11 beta-hydroxysteroid dehydrogenase type2 (11 beta-HSD2, which potently inactivates glucocorticoids) and the mineralocorticoid receptor (MR) by in situ hybridisation from embryonic day 9.5 (E9.5, term = E19) until after birth in the mouse. Widespread abundant 11 beta-HSD2 mRNA expression from E9.5-E12.5 changes dramatically at approximately E13 to a limited tissue-specific pattern (kidney, hindgut, testis/bile ducts, lung and a few brain regions (later seen in cerebellum, thalamus, roof of midbrain, neuroepithelial regions in pons and near the subicular hippocampus)). Placenta (labyrinthine zone) and extra-embryonic membranes express abundant 11 beta-HSD2 mRNA until E15.5 but this ceases = E16.5. It is unclear to what extent rodent term placental 11 beta-HSD activity is due to persisting 11 beta-HSD2 protein. Convincing MR mRNA expression is seen from E13.5 and includes pituitary, heart, muscle and meninges with expression later in gut, kidney, thymus, discrete areas of lung and several brain regions (including hippocampus, rhinencephalon and hypothalamus). 11 beta-HSD2 and MR clearly co-localise = E18.5 in kidney and colon and might do so in discrete areas of lung (E14-15) and neuroepithelia near the subicular hippocampus. Probably elsewhere MR are non-selective and 11 beta-HSD2 is involved in protecting glucocorticoid receptors in fetal fetal tissues. Comparison with previous enzymology studies suggest the changing pattern of 11 beta-HSD2 mRNA is likely to be translated into enzyme activity and have significant parallels in human development.  相似文献   

4.
In estrogen metabolism, the enzymatic properties of the 17beta-hydroxysteroid dehydrogenase (17betaHSD) isozymes play very important roles in steroid hormone metabolism in various tissues, including the placenta. 17betaHSD type 1 catalyzes primarily the reduction of estrone (E1) to estradiol (E2), whereas 17betaHSD type 2 catalyzes primarily the oxidation of E2 to E1. In this study, we examined immunohistochemical localization of 17betaHSD types 1 and 2 in human placenta (31 cases) ranging from 4-40 weeks gestation. The immunoreactivity of 17betaHSD type 1 was exclusively detected in syncytiotrophoblast from 4 weeks gestation to term placenta. Immunoreactivity of 17betaHSD type 2 first appeared in endothelial cells of intravillous vessels at 12 weeks gestation, and the number of 17betaHSD type 2-positive endothelial cells markedly increased up to 19 weeks, then reached a plateau. We quantitatively evaluated the 17betaHSD type 2-positive endothelial cells in chorionic villi and determined the ratio of 17betaHSD type 2-positive endothelial cells using immunohistochemistry of CD34, an endothelial antigen, in serial mirror tissue sections and subsequent image analysis using CAS 200. CD34 was detected from 4 weeks gestation, and its positive areas continued to increase toward term. The 17betaHSD type 2-positive area per CD34-positive area markedly increased from 13 weeks gestation and reached a plateau at 19 weeks gestation, in which almost all endothelial cells were positive for 17betaHSD type 2. 17BetaHSD type 2, therefore, is considered to prevent the passage of excessive estrogens into the fetal circulation at endothelial cells of the intravillous fetal capillaries by catalyzing the inactivation ofE2 to E1.  相似文献   

5.
The 11beta-hydroxysteroid dehydrogenases (11betaHSD) modulate intracellular glucocorticoid levels, with 11betaHSD1 converting cortisone to cortisol mainly in the liver, and 11betaHSD2 performing the reverse reaction in sodium transporting epithelia and placenta. We have attempted to expand the 11betaHSD subfamily by isolating homologous cDNA's. Expressed Sequence Tag databases were screen with segments of the 11betaHSD1 enzyme amino acid sequence and Pan1b identified as a new member of the short chain alcohol dehydrogenase superfamily. Northern blot analysis of total RNA from human tissues showed a single band at 1.9 kb and a tissue specific pattern of expression with high levels in the liver, adrenal carcinoma, lung and small intestine, and much lower levels in the kidney, heart and placenta. Expression studies in a Chinese hamster ovary cell line (CHOP) showed that Pan1b did not metabolize glucocorticoids. However, preliminary studies on a range of substrates revealed that Pan1b acted as a dehydrogenase on 17beta-hydroxysteroids, although further kinetic analysis was confounded by large amounts of endogenous oxidoreductase activity in CHOP cells. These studies suggest the existence of a novel human 17betaHSD enzyme.  相似文献   

6.
In the kidney, the 11beta-hydroxysteroid dehydrogenase type 2 enzyme (11betaHSD2) inactivates glucocorticoids to their inactive ketoforms and thus prevents endogenous glucocorticoids from occupying the nonselective mineralocorticoid receptor in epithelial tissues. Several mutations have been described in the 11betaHSD2 gene in the congenital syndrome of apparent mineralocorticoid excess. These mutations generate partially or completely inactive 11betaHSD2 enzymes. In the present work, we describe an already known mutation in a new patient affected by apparent mineralocorticoid excess, which results in an arginine-to-cysteine mutation (R213C) in the 11betaHSD2 enzyme. This mutation has been found in two other independent families. In vitro expression studies of this mutant provide evidence that the mutant protein is normally expressed, but its activity is abolished. The CGC-to-TGC (C-toT) transition at codon 213 can be considered a typical CpG-consequence mutation. The present finding suggests that the codon R213 of 11betaHSD2 is a hot spot for mutations in this gene, as shown by the occurrence of an R213C point-mutation in several families unrelated to each other.  相似文献   

7.
Glucocorticoids (GCs) act via intracellular mineralocorticoid (MR) and glucocorticoid receptors (GR). However, it has recently been recognized that GC access to receptors is determined by the presence of tissue-specific 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) that catalyze the interconversion of active corticosterone and inert 11-dehydrocorticosterone. 11beta-HSD type 1 (11beta-HSD1) is a bidirectional enzyme in vitro that acts predominantly as a reductase (regenerating corticosterone) in intact neurons. In contrast, 11beta-HSD type 2 (11beta-HSD2) is a higher affinity exclusive dehydrogenase that excludes GCs from MR in the kidney, producing aldosterone-selectivity in vivo. We have examined the ontogeny of 11beta-HSD mRNAs and enzyme activity during prenatal brain development and correlated this with GR and MR mRNA development. These data reveal that (1) 11beta-HSD2 mRNA is highly expressed in all CNS regions during midgestation, but expression is dramatically reduced during the third trimester except in the thalamus and cerebellum; (2) 11beta-HSD2-like activity parallels closely the pattern of mRNA expression; (3) 11beta-HSD1 mRNA is absent from the CNS until the the third trimester, and activity is low or undectectable; and (4) GR mRNA is highly expressed throughout the brain from midgestation, but MR gene expression is absent until the last few days of gestation. High 11beta-HSD2 at midgestation may protect the developing brain from activation of GR by GCs. Late in gestation, repression of 11beta-HSD2 gene expression may allow increasing GC activation of GR and MR, permitting key GC-dependent neuronal and glial maturational events.  相似文献   

8.
Glucocorticoids directly regulate testosterone production in Leydig cells through a glucocorticoid receptor (GR)-mediated repression of the genes that encode testosterone biosynthetic enzymes. The extent of this action is determined by the numbers of GR within the Leydig cell, the intracellular concentration of glucocorticoid, and 11beta-hydroxysteroid dehydrogenase (11betaHSD) activities that interconvert corticosterone (in the rat) and its biologically inert derivative, 11-dehydrocorticosterone. As glucocorticoid levels remain stable during pubertal development, GR numbers and 11betaHSD activities are the primary determinants of glucocorticoid action. Therefore, in the present study, levels of GR and 11betaHSD messenger RNA (mRNA) and protein were measured in rat Leydig cells at three stages of pubertal differentiation: mesenchymal-like progenitors (PLC) on day 21, immature Leydig cells (ILC) that secrete 5alpha-reduced androgens on day 35, and adult Leydig cells (ALC) that are fully capable of testosterone biosynthesis on day 90. Numbers of GR, measured by [3H]dexamethasone binding, in purified cells were 6.34 +/- 0.27 (x 10(3) sites/cell; mean +/- SE) for PLC, 30.45 +/- 0.74 for ILC, and 32.54 +/- 0.84 for ALC. Although GR binding was lower in PLC, steady state levels for GR mRNA were equivalent at all three stages (P > 0.05). Oxidative and reductive activities of 11betaHSD were measured by assaying the conversion of radiolabeled substrates in incubations of intact Leydig cells. Both oxidative and reductive activities were barely detectable in PLC, intermediate in ILC, and highest in ALC. The ratio of the two activities favored reduction in PLC and ILC and oxidation in ALC (oxidation/reduction, 0.33 +/- 0.33 for PLC, 0.43 +/- 0.05 for ILC, and 2.12 +/- 0.9 for ALC, with a ratio of 1 indicating equivalent rates for both activities). The mRNA and protein levels of type I 11betaHSD in Leydig cells changed in parallel with 11betaHSD reductive activity, which increased gradually during the transition from PLC to ALC, compared with the sharp rise that was seen in oxidative activity. We conclude that Leydig cells at all developmental stages have GR and that their ability to respond to glucocorticoid diminishes as net 11betaHSD activity switches from reduction to oxidation. This provides a mechanism for the Leydig cell to regulate its intracellular concentration of corticosterone, thereby varying its response to this steroid during pubertal development.  相似文献   

9.
Glucocorticoid hormone action in several target tissues is dependent not only on the expression of the glucocorticoid receptor, but also on that of the 11beta-hydroxysteroid dehydrogenase (11betaHSD) enzymes, 11betaHSD-1 and -2. In the uterus, glucocorticoids can exert inhibitory effects on a range of important functions, particularly in relation to the effects of estrogen. Therefore, the present study examined immunolocalization of the two 11betaHSD enzymes in the rat uterus at each stage of the estrous cycle and after ovariectomy with or without estrogen/progesterone replacement. In cycling rats 11betaHSD-1 was localized to luminal and glandular epithelial cells and to eosinophils in both the endometrial stroma and myometrium. In contrast, 11betaHSD-2 immunostaining was localized to endometrial stromal cells and myometrial cells, with no staining evident in epithelial cells or eosinophils. Immunostaining for both enzymes was cycle dependent, being maximal at proestrus and minimal at diestrus. Western blot analysis of whole uterus at proestrus showed the presence of 34- and 40-kDa immunoreactive species for 11betaHSD-1 and -2, respectively. These immunoreactive signals were almost abolished by ovariectomy, but this effect was reversed for both enzymes by estrogen replacement with or without progesterone. These effects of ovariectomy and steroid replacement were confirmed by immunocytochemical analysis, with the exception that progesterone appeared to enhance the stimulatory effects of estrogen on 11betaHSD-2 specifically within the endometrial stroma. In conclusion, these results establish the presence of both 11betaHSD-1 and -2 in the nonpregnant rat uterus and show distinct distributions for the two enzymes and cyclic variation related to positive regulation by ovarian steroids. The physiological implications of these patterns of 11betaHSD expression will ultimately depend on the reaction direction for each enzyme, but 11betaHSD-2 is likely to limit disruptive effects of glucocorticoids on the endometrial stroma, and 11betaHSD-1 may then serve to selectively reactivate glucocorticoids in epithelial cells.  相似文献   

10.
The glucocorticoid receptor (GR) is downregulated by glucocorticoids (autoregulation). In contrast, the metallothionein gene (MTIIa) is positively regulated by glucocorticoids, which requires a functional receptor protein. We have investigated the expression of GR and MTIIa mRNA in nasal mucosal biopsy specimens, nasal brush-lavage samples, and peripheral blood lymphocytes from 14 healthy volunteers after local treatment with one of two different glucocorticoids: fluticasone propionate or budesonide. In nasal mucosal biopsy specimens, a significant decrease in GR mRNA occurred with increasing doses of both steroids, whereas a significant and parallel increase in MTIIa mRNA was observed. We found nasal brush-lavage less suitable for studies of GR mRNA and MTIIa mRNA regulation by locally administered glucocorticoids. In mucosal biopsy specimens, but not in peripheral blood lymphocytes, we found a correlation between basal GR mRNA and MTIIa mRNA levels, where low GR mRNA levels were associated with low MTIIa mRNA levels, and vice versa. In conclusion, this study shows that locally administered glucocorticoids significantly affect the expression of specific genes and that there is an interindividual and tissue-specific variation in GR mRNA and MTIIa mRNA expression, which may be used in studies of variations in clinical responses to nasal glucocorticoids.  相似文献   

11.
12.
The purpose of this study was to evaluate the effects of acute (a single injection) and chronic stimulation (twice daily injection for 9 days) by ACTH on changes occurring in the temporal expression of steroidogenic enzymes in the rat adrenal in vivo. Under acute ACTH stimulation, the level of steroidogenic acute regulatory protein (StAR) messenger RNA (mRNA) was increased within 0.5 h in both zona glomerulosa (ZG) and zona fasciculata-reticularis (ZFR), with maximal increases of 220-370% and 300-350% in the ZG and ZFR, respectively. Increases in the levels of StAR protein in homogenates were also found in the ZG (700%) and the ZFR (300%), but were delayed compared with those of their mRNA. Furthermore, the increase in mitochondrial StAR protein was concomitant with that in the homogenate, indicating that the entry of StAR into mitochondria might not be necessary to increase steroidogenesis during the early stimulatory phase. The levels of c-jun, c-fos, junB, and fosB mRNA in ZG and ZFR were also rapidly maximally elevated within 0.5-1 h after ACTH administration and fell to near control levels 5 h posttreatment. The levels of c-jun protein were already increased in both zones at 1 h, reached 200% at 3 h, and remained elevated 5 h post-ACTH treatment. The levels of c-Fos protein were maximally increased by 240% in both zones after 1 h and decreased thereafter to control values at 5 h. Few changes were observed in the adrenal protein contents of cholesterol side-chain cleavage cytochrome P450 (P450scc), cytochrome P450 11beta-hydroxylase (P450C11), cytochrome P450 21-hydroxylase (P450C21), and 3beta-hydroxysteroid dehydrogenase (3betaHSD). Under chronic stimulation by ACTH, we observed elevations in the levels of plasma corticosteroids and changes in the mRNA and protein levels of many adrenal steroidogenic enzymes in both zones. In the ZG, administration of ACTH for 9 days provoked an increase in the level of StAR mRNA (210-270%) and a decrease in the levels of 3betaHSD, cytochrome P450 aldosterone synthase (P450aldo), and AT1 receptor mRNA (by 40%, 70%, and 90%, respectively), whereas the levels of P450scc and P450C21 mRNA did not differ significantly from the control values. Western blotting analysis showed that the adrenal ZG protein levels of StAR and P450scc were increased (150%), 3betaHSD was not changed, and P450C21 was decreased by 70%. In the ZFR, the levels of P450scc and StAR mRNAs were increased (260% and 570-870%, respectively). The levels of 3betaHSD, P450C21, and P450C11 mRNA did not differ from control values in that zone. Western blotting analysis showed that the ZFR protein level of 3betaHSD was not changed, P450scc and P450C21 were decreased by 40% and 60%, respectively, and StAR was increased by 160%. Although c-fos and fosB mRNAs were undetectable after 9 days of chronic ACTH treatment, c-jun mRNA and its protein were still detectable, suggesting a basic role for this protooncogene in maintaining the integrity and function of the adrenal cortex. When dexamethasone was administered to rats for 5 days to inhibit their ACTH secretion, the mRNA levels of many steroidogenic enzymes were decreased, with the exception of StAR, 3betaHSD, and P450aldo. These results confirm the importance of physiological concentrations of ACTH in maintaining normal levels of adrenocortical enzymes and also indicate that in addition to ACTH, other factors are involved in controlling the expression of StAR, 3betaHSD, and P450aldo. In conclusion, we showed that ACTH acutely increases StAR mRNA followed, after a delay, by an increase in the level of StAR protein; this suggests that posttranslational modifications of the StAR precursor occurred during the early stimulatory phase and before the apparent translation of the newly formed mRNA. The rapid induction of protooncogenes suggests their participation in the action of ACTH to stimulate steroidogenesis. (ABSTRACT TRUNCATED)  相似文献   

13.
Vitamin A (retinol) regulates embryonic development and adult epithelial function via metabolism to retinoic acid, a pleiotrophic regulator of gene expression. Retinoic acid is synthesized locally and functions in an autocrine or paracrine fashion, but the enzymes involved remain obscure. Alcohol dehydrogenase (ADH) isozymes capable of metabolizing retinol include class I and class IV ADHs, with class III ADH unable to perform this function. ADHs also metabolize ethanol, and high levels of ethanol inhibit retinol metabolism, suggesting a possible mode of action for some of the medical complications of alcoholism. To explore whether any ADH isozymes are linked to retinoic acid synthesis, herein we have examined the expression patterns of all known classes of ADH in mouse embryonic and adult tissues, and also measured retinoic acid levels. Using in situ hybridization, class I ADH mRNA was localized in the embryo to the epithelia of the genitourinary tract, intestinal tract, adrenal gland, liver, conjunctival sac, epidermis, nasal epithelium, and lung, plus in the adult to epithelia within the testis, epididymis, uterus, kidney, intestine, adrenal cortex, and liver. Class IV ADH mRNA was localized in the embryo to the adrenal gland and nasal epithelium, plus in the adult to the epithelia of the esophagus, stomach, testis, epididymis, epidermis, and adrenal cortex. Class III ADH mRNA, in contrast, was present at low levels and not highly localized in the embryonic and adult tissues examined. We detected significant retinoic acid levels in the fetal kidney, fetal/adult intestine and adrenal gland, as well as the adult liver, lung, testis, epididymis, and uterus--all sites of class I and/or class IV ADH gene expression. These findings indicate that the expression patterns of class I ADH and class IV ADH, but not class III ADH, are consistent with a function in local retinoic acid synthesis needed for the development and maintenance of many specialized epithelial tissues.  相似文献   

14.
Targeted disruption of mineralocorticoid receptor (MR) gene results in pseudohypoaldosteronism type I with failure to thrive, severe dehydration, hyperkalemia, hyponatremia, and high plasma levels of renin, angiotensin II, and aldosterone. In this study, mRNA expression of the different components of the renin-angiotensin system (RAS) were evaluated in liver, lung, heart, kidney and adrenal gland to assess their response to a state of extreme sodium depletion. Angiotensinogen, renin, angiotensin-I converting enzyme, and angiotensin II receptor (AT1 and AT2) mRNA expressions were determined by Northern blot and RT-PCR analysis. Furthermore, in situ hybridization and immunohistochemistry allowed us to identify the cell types involved in the variation of the RAS component expression. In the heterozygous mice (MR+/-), compared with wild-type mice (MR+/+), there was no significant variation of any mRNA of the RAS components. In MR knockout mice (MR-/-), compared with wild-type mice, there were significant increases in the expression level of several RAS components. In the liver, angiotensinogen and AT1 receptor mRNA expressions were moderately stimulated. In the kidney, renin mRNA was increased up to 10-fold and in situ hybridization showed a marked recruitment of renin-producing cells; however, the levels of angiotensin-I converting enzyme mRNA and AT1 mRNA were not changed. Interestingly, in adrenal gland, renin expression was also strongly up-regulated in a thickened zona glomerulosa, whereas AT1 mRNA expression remained unchanged. Altogether, these results demonstrate that in the MR knockout mice model, RAS component expressions are differentially altered, renin being the most stimulated component. Angiotensinogen and AT1 in the liver are also increased, but the other elements of the RAS are not affected.  相似文献   

15.
The study examined the effects of 8 h sustained hypoxaemia, with 72 h recovery, on the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) types 1 and 2 in near-term fetal sheep. Placental tissue and fetal liver and kidney were collected at Days 135-138 gestation 72 h after 8 h sustained hypoxaemia induced by lowering maternal inspired oxygen with (n = 9) and without (n = 6) metabolic acidosis or after 8 h normoxia (n = 6). In hypoxic fetuses with metabolic acidosis, a significant increase in the level of 11beta-HSD2 mRNA in the kidney compared with controls was correlated significantly with degree of associated fetal acidaemia, but there were no corresponding increases in the tissue level of 11beta-HSD2 activity. Hence, a time lag may exist between the mRNA and activity. Alternatively, the translation of 11beta-HSD2 mRNA may be inhibited. In contrast, levels of 11beta-HSD1 mRNA in the placenta and fetal liver were unchanged 72 h after sustained hypoxaemia. These results indicate that sustained fetal hypoxaemia with metabolic acidosis selectively up-regulates 11beta-HSD2 mRNA expression in the near-term fetal sheep kidney. This may be a re-bound effect at 72 h following an initial down-regulation as observed in a previous study.  相似文献   

16.
Eleven-beta-hydroxysteroid dehydrogenase (11 beta-HSD) is an enzyme which degrades 11-hydroxycorticosteroids to biologically inactive 11-oxocorticosteroids (cortisone and 11-dehydrocorticosterone). In some tissues, the activity of this enzyme prevents binding of cortisol to mineralocorticoid receptors. The present experiments were designed to test the hypothesis that the fetal kidney contains 11 beta-HSD, that the activity of 11 beta-HSD in fetal kidney increases near term, and that the fetal lung does not contain significant 11 beta-HSD activity. In kidney and lung tissue from 23 fetal sheep ranging in age between 86 and 145 days' gestation, we measured 11 beta-HSD activity. We found significant activity in fetal kidney (14-85% conversion from cortisol to cortisone) but no measurable activity in fetal lung (0-9%). The activity of 11 beta-HSD was significantly related to fetal gestational age (r = 0.76, n = 14). We conclude that 11 beta-HSD activity in the fetal kidney develops as a function of fetal gestational age, and that activity cannot be demonstrated in fetal lung. We speculate 11 beta-HSD in the fetus might function to alter the sensitivity of target organs to glucocorticoids, as well as to mineralocorticoids, and that the absence of activity in the lung allows a high sensitivity of pulmonary tissue to cortisol at the end of gestation.  相似文献   

17.
18.
IGF-II plays a major role in the regulation of human fetal growth and development. However, more extensive information on the cellular sites of IGF-II synthesis in the fetus would provide more insight into its role in fetal organogenesis. Thus we have determined the sites of IGF-II synthesis in 18-26-wk gestation human fetal tissues using in situ hybridization with a digoxigenin-labeled cRNA probe to localize IGF-II mRNA in fetal liver, kidney, adrenal gland, cerebral cortex, costal cartilage, skeletal muscle, and lung, and in placental tissue. In human fetal tissues it has to date been impossible to clearly assign IGF-II mRNA to epithelial cells of entodermal origin. Besides their already known localization in cell matrix and a variety of mesodermal cell types, strong IGF-II mRNA-positive signals were detected in epithelial cells in the liver (hepatocytes), bronchial and bronchiolar epithelium, undifferentiated renal tubular epithelium, mature glomerular epithelium, pelvic urothelium, and adrenal epithelial cells of the zona persistens. To identify the cellular location of immunoreactive IGF-II, we also performed immunocytochemical studies in tissues of the same fetuses. Every tissue studied except the cerebral cortex contained immunoreactive cells; however, immunostaining was generally weaker than in situ hybridization signals. Our data show that the distribution of IGF-II in human fetal tissue is much more widespread than hitherto thought. A digoxigenin-labeled detection system for IGF-II is more capable of detecting the cellular expression pattern of IGF-II than radioactive probes and is suitable for analysis of routinely prepared paraffin-embedded material.  相似文献   

19.
Based on animal experiments, a switch of the erythropoietin (EPO) production site from the liver in the fetus to the kidneys in the adult has been postulated. To study the switch in humans, we have quantitated EPO mRNA expression in liver, kidney, spleen, and bone marrow of human fetuses and neonates by means of a competitive polymerase chain reaction (PCR). Tissue samples from 66 routine postmortem examinations were obtained. EPO mRNA was expressed in 97% of the tissue specimen derived from the liver (n = 66) and in 93% of those from the kidneys (17 weeks of gestation until 18 months after birth; n = 59). For the first time the EPO gene was found expressed in vivo in human spleen (96% of 64 samples) and in fetal and neonatal bone marrow (81% of 21 samples). EPO mRNA expression in the kidneys increased significantly beyond 30 weeks of gestation (P < .05). Although there was a slight decrease in EPO mRNA content per g liver tissue towards birth, the liver accounted for about 80% of the total body EPO mRNA. The contribution of the spleen and bone marrow were minor compared with liver and kidneys. Our results indicate that in humans the liver is the primary site of EPO gene expression not only in fetal, but also in neonatal life. A significant increase of renal EPO mRNA expression after 30 weeks of gestation might indicate the beginning switch.  相似文献   

20.
Although oxidation of cortisol or corticosterone by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) represents the physiological mechanism conferring specificity for aldosterone on the mineralocorticoid receptor in mineralocorticoid target tissues, little attention has been paid until now to the expression and activity of this enzyme in human adrenals. We have shown that human adrenal cortex expresses 11beta-HSD type 2 (11beta-HSD2) gene, and found a marked 11beta-HSD2 activity in microsomal preparations obtained from slices of decapsulated normal human adrenal cortices. Under basal conditions, adrenal slices secreted, in addition to cortisol and corticosterone (B), sizeable amounts of cortisone and 11-dehydrocorticosterone (DH-B), the inactive forms to which the former glucocorticoids are converted by 11beta-HSD. Addition of the 11beta-HSD inhibitor glycyrrhetinic acid elicited a moderate rise in the production of cortisol and B and suppressed that of cortisone and DH-B. ACTH and angiotensin II evoked a marked rise in the secretion of cortisol and B, but unexpectedly depressed the release of cortisone and DH-B. ACTH also lowered the capacity of adrenal slices to convert [3H]cortisol to [3H]cortisone. This last effect of ACTH was concentration-dependently abolished by both aminoglutethimide and cyanoketone, which blocks early steps of steroid synthesis, but not by metyrapone, an inhibitor of 11beta-hydroxylase. Collectively, these findings indicate that the human adrenal cortex possesses an active 11beta-HSD2 engaged in the inactivation of newly formed glucocorticoids. The activity of this enzyme is negatively modulated by the main agonists of glucocorticoid secretion through an indirect mechanism, probably involving the rise in the intra-adrenal concentration of non-11beta-hydroxylated steroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号