首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non-native proteins. In the past few decades, efforts have been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone-mimetic materials are discussed.  相似文献   

2.
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.  相似文献   

3.
Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.  相似文献   

4.
Bioinspired engineering offers a promising alternative approach in accelerating the development of many man‐made systems. Next‐generation infrared (IR) sensing systems can also benefit from such nature‐inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high‐performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal‐based IR sensors that rely on either bolometer‐like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward.  相似文献   

5.
Gene delivery holds great potential for the treatment of many different diseases. Vaccination with DNA holds particular promise, and may provide a solution to many technical challenges that hinder traditional vaccine systems including rapid development and production and induction of robust cell‐mediated immune responses. However, few candidate DNA vaccines have progressed past preclinical development and none have been approved for human use. This Review focuses on the recent progress and challenges facing materials design for nonviral DNA vaccine drug delivery systems. In particular, we highlight work on new polymeric materials and their effects on protective immune activation, gene delivery, and current efforts to optimize polymeric delivery systems for DNA vaccination.  相似文献   

6.
Metallurgical efforts to develop a soft magnetic material suitable for application in the rotor of a generator or motor in advanced aerospace electric systems are reviewed. Commercial materials which have been considered include AISI 4340 steel, H-11 steel, Nivco alloy, and 15- and 18-percent Ni maraging steels. Developments described have led to several new materials with combination of good mechanical and magnetic properties at elevated temperature. Such materials include an improved maraging steel a precipitation hardenable cobalt-base alloy, a carbide strengthened Co-W alloy, dispersion-strengthened soft magnetic alloys, and unidirectionally solidified Co-Nb-Fe eutectic alloys.  相似文献   

7.
The development of smart energetics is at the forefront of the research community. The desire is to have energetics that could have ON/OFF capability, tunable performance, and/or targeted energy delivery. Therefore, efforts have been focused on designing systems that respond to stimuli in a controlled manner. In this paper, nanoscale aluminum (nAl)/fluoropolymer reactive systems are studied and the piezoelectric nature of the fluoropolymers is used as a means to sensitize the system. Using a capacitor type setup, and drawing on our previous efforts, three fluoropolymer/nAl systems are studied and their sensitivities upon application of a DC voltage are quantified using BAM drop weight as the indicator. It is found, upon application of 1.0 kV, that for all three fluoropolymer/Al systems the sensitivity is greatly increased. For example, for the THV221/nAl system the impact energy required for ignition is reduced from 63 to 10 J. Further increasing the applied voltage is shown to further increase the sensitivity for all systems studied. The role of electroactive phase content and sensitization time is also discussed.
  相似文献   

8.
New electronic materials have the potential to enable wearable computers, personal health monitors, wall‐scale displays and other systems that are not easily achieved with established wafer based technologies. A traditional focus of this field is on the development of materials for circuits that can be formed on bendable substrates, such as sheets of plastic or steel foil. More recent efforts seek to achieve similar systems on fully elastic substrates for electronics that can be stretched, compressed, twisted and deformed in ways that are much more extreme than simple bending. This article highlights some recent progress in this area, with an emphasis on materials approaches and demonstrated devices.  相似文献   

9.
Using a tungstate-tellurite glass and high-purity zinc sulfide—promising IR optical materials—as test systems, we have developed an approach for evaluating the limits of the sensitivity of optical losses to the presence of heterophase impurity inclusions and second-phase inclusions differing in chemical nature and size. We have calculated the volume fraction of disperse phases and concentration of inclusions which ensure optical losses in these materials below a predetermined level.  相似文献   

10.
We discuss recent research efforts towards understanding and implementing the physical rules needed to make materials—especially materials composed of nanoscale building blocks—that exhibit the defining characteristics of living systems: adaptive and evolving functional behavior. In particular, we highlight advancements in direct imaging and quantifying of kinetic pathways governing structural reconfiguration in model systems of colloidal nanoparticles as well as emerging opportunities brought by frontier efforts in synthesizing shape-shifting colloids and flexible electronics. Direct observation of kinetic “crossroads” in nanoparticle self-assembly and reconfiguration will offer insight into how these steps can be manipulated to design dynamic, potentially novel materials and devices. Moreover, these principles will not be limited to nanoparticles; when extended to building blocks like soft micelles and proteins, they have the potential to have a similar impact throughout the broader field of soft matter physics.  相似文献   

11.
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2-caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.  相似文献   

12.
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as “smart,” lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.  相似文献   

13.
Learning from nature has inspired the creation of intelligent materials to better understand and imitate biology. Recent studies on bioinspired responsive surfaces that can switch between different states are shown, which open up new avenues for the development of smart materials in two dimensions. Based on this strategy, biomimetic nanochannel systems have been produced by introducing responsive molecules, which closely mimic the gating mechanism of biological nanochannels and show potential applications in many fields such as photoelectric‐conversion systems demonstrated in this paper.  相似文献   

14.
Recent advances in materials, manufacturing, biotechnology, and microelectromechanical systems (MEMS) have fostered many exciting biosensors and bioactuators that are based on biocompatible piezoelectric materials. These biodevices can be safely integrated with biological systems for applications such as sensing biological forces, stimulating tissue growth and healing, as well as diagnosing medical problems. Herein, the principles, applications, future opportunities, and challenges of piezoelectric biomaterials for medical uses are reviewed thoroughly. Modern piezoelectric biosensors/bioactuators are developed with new materials and advanced methods in microfabrication/encapsulation to avoid the toxicity of conventional lead‐based piezoelectric materials. Intriguingly, some piezoelectric materials are biodegradable in nature, which eliminates the need for invasive implant extraction. Together, these advancements in the field of piezoelectric materials and microsystems can spark a new age in the field of medicine.  相似文献   

15.
Nano-photocatalytic materials: possibilities and challenges   总被引:7,自引:0,他引:7  
Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications. We then examine the design and fabrication of advanced photocatalytic materials in the framework of nanotechnology. Many of the most recent advances in photocatalysis have been realized by selective control of the morphology of nanomaterials or by utilizing the collective properties of nano-assembly systems. Finally, we discuss the current theoretical understanding of key aspects of photocatalytic materials. This review also highlights crucial issues that should be addressed in future research activities.  相似文献   

16.
Amphiphilic lipids aggregate in aqueous solution into a variety of structural arrangements. Among the plethora of ordered structures that have been reported, many have also been observed in nature. In addition, due to their unique morphologies, the hydrophilic and hydrophobic domains, very high internal interfacial surface area, and the multitude of possible order?order transitions depending on environmental changes, very promising applications have been developed for these systems in recent years. These include crystallization in inverse bicontinuous cubic phases for membrane protein structure determination, generation of advanced materials, sustained release of bioactive molecules, and control of chemical reactions. The outstanding diverse functionalities of lyotropic liquid crystalline phases found in nature and industry are closely related to the topology, including how their nanoscopic domains are organized. This leads to notable examples of correlation between structure and macroscopic properties, which is itself central to the performance of materials in general. The physical origin of the formation of the known classes of lipidic lyotropic liquid crystalline phases, their structure, and their occurrence in nature are described, and their application in materials science and engineering, biology, medical, and pharmaceutical products, and food science and technology are exemplified.  相似文献   

17.
Abstract

Fuel gases derived from solid fuels such as coal, biomass and waste and their mixes have the potential to cause both erosion and corrosion damage to components in gas turbines and diesel engines. To allow the statistically valid assessment of materials performance in short term plant runs, burner rig tests and laboratory simulated environments a methodology has been developed to collect compatible quantitative data on materials degradation. Accurate measurement techniques based on pre-exposure contact metrology and post-exposure optical microscopy/image analysis have been developed. These take into account both the low level of damage required for practical systems and the localised nature of hot corrosion damage. The data produced have been used to derive and test quantitative models for the prediction of the performance of candidate materials in such power systems. For these models to be used with confidence, similar damage morphologies must be produced in both the real and simulated conditions, as well as similar damage rates.  相似文献   

18.
Materials that are lightweight yet exhibit superior mechanical properties are of compelling importance for several technological applications that range from aircrafts to household appliances. Lightweight materials allow energy saving and reduce the amount of resources required for manufacturing. Researchers have expended significant efforts in the quest for such materials, which require new concepts in both tailoring material microstructure as well as structural design. Architectured materials, which take advantage of new engineering paradigms, have recently emerged as an exciting avenue to create bespoke combinations of desired macroscopic material responses. In some instances, rather unique structures have emerged from advanced geometrical concepts (e.g. gyroids, menger cubes, or origami/kirigami-based structures), while in others innovation has emerged from mimicking nature in bio-inspired materials (e.g. honeycomb structures, nacre, fish scales etc.). Beyond design, additive manufacturing has enabled the facile fabrication of complex geometrical and bio-inspired architectures, using computer aided design models. The combination of simulations and experiments on these structures has led to an enhancement of mechanical properties, including strength, stiffness and toughness. In this review, we provide a perspective on topologically engineered architectured materials that exhibit optimal mechanical behaviour and can be readily printed using additive manufacturing.  相似文献   

19.
20.
Abstract

The potential uses of ceramics in gas turbine engines are reviewed in the context of the problems arising from the brittle nature of the materials. Material properties are considered in relation to various turbine components and the themes of reliability and component design. It is concluded that substantial efforts will be required in materials and processes in achieving greater reliability and improved design before ceramics are successfully applied in gas turbines.

MST/436  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号