首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
在小麦粉中添加不同比例的糙米酵素制作馒头,对其面团特性进行分析,并通过正交试验确定馒头中添加糙米酵素的最佳工艺参数。结果表明:随着糙米酵素添加量的增加,面团的吸水率逐渐下降;面团的形成时间、稳定时间、弱化度、拉伸能量、延伸度、拉伸阻力、拉伸比,在糙米酵素添加量为0~7%时均稍有下降但变化不大,在糙米酵素添加量为9%时均急剧下降且变化十分明显。糙米酵素馒头的最佳配方为:糙米酵素7%、白糖6%、酵母1.1%、水46%。  相似文献   

2.
为进一步比较糙米酵素的制备工艺,选择淀粉酶活力为指标,研究不同发芽条件对发芽糙米淀粉酶活力的影响,比较糙米直接发酵和糙米先发芽再发酵来制备糙米酵素的淀粉酶活力差异。结果表明:糙米的最佳发芽条件为浸泡温度32℃、浸泡时间24h、发芽温度32℃、发芽时间28 h;在酵母菌接种量4%,发酵时间6 h,发酵温度30℃条件下,糙米先发芽再发酵方法制备的糙米酵素淀粉酶活力为890.5 U/g,高于糙米直接发酵的制备工艺。  相似文献   

3.
以糖化液中还原糖含量和总黄酮物质含量为指标,对荞麦全粉糖化工艺参数进行了优化研究,分析了pH值、糖化温度、糖化时间和酶添加量对糖化效果的影响,并通过单因素试验和正交试验对工艺参数进行了优化。结果表明:荞麦糖化工艺参数的最优组合为:pH值4.6、糖化温度60℃、糖化时间2.0h及酶添加量为α-淀粉酶50U/g和糖化酶250U/g。在此工艺条件下,糖化液中还原糖含量为16.28%,总黄酮物质含量为0.02571mg/mL。  相似文献   

4.
花生粕含有丰富的营养成分,如蛋白质、碳水化合物、多酚和维生素等,若将碳水化合物降解,可得到小分子的糖,所得的糖化液中保留了花生粕中的部分营养物质,不仅可被直接饮用,还可为酵母提供良好的生长环境,并进一步用于制备花生酒。通过单因素试验,研究了糖化酶用量、糖化温度、液料比、pH值和糖化时间对糖化率的影响,并在单因素的基础上,通过响应面分析以及岭嵴分析得到了优化组合条件。最佳工艺条件是:糖化酶用量为500.12U/g、糖化温度为50℃、液料比为15∶1、pH值为4.0和糖化时间为25h,糖化率可达到92.98%。  相似文献   

5.
在发芽糙米中加入峰蜜,利用酵母发酵制备成糙米酵素,并对糙米酵素提取物的抗氧化活性进行研究。结果表明:糙米酵素提取物清除DPPH自由基、清除超氧阴离子及羟基自由基的能力较强,与常用抗氧化剂BHT相差不大。  相似文献   

6.
在不同温度下储藏糙米,定期取样检测糙米的水分含量、粘度值及脂肪酸值;同时制备糙米酵素,测定其脂肪酸值、丙二醛和γ-氨基丁酸含量。结果表明:随着储藏时间增加,糙米水分含量和粘度值下降;糙米酵素脂肪酸值和丙二醛含量增多;γ-氨基丁酸含量先增加再减少,常温25℃和高温40℃储藏时糙米及其酵素中γ-氨基丁酸含量均在储藏60 d左右达到峰值,随后逐渐下降;在储藏150 d时,糙米酵素中有害成分增多,食用安全性下降,但仍可利用。  相似文献   

7.
用糙米制备酵素可保留糙米中多种营养成分。研究不同储藏条件对糙米性质及其酵素中活性成分的影响。结果表明:随着储藏时间增加,糙米酵素中γ-氨基丁酸含量呈现先上升后下降趋势,且常温储藏糙米和30℃条件下储藏糙米其酵素中γ-氨基丁酸含量在储藏第60 d时达到最大值,40℃条件下储藏糙米在储藏第30 d时达到最大值;糙米脂肪酸值呈现上升趋势,糙米粘度呈现下降趋势,且温度越高,脂肪酸值上升越快,粘度下降越快。  相似文献   

8.
对糙米中的抗营养因子——植酸和胰蛋白酶抑制因子含量进行测定,采用酶解及热磨法、发芽法和糙米酵素法去除抗营养因子,并比较去除率。结果表明:3种方法均可有效降低糙米中抗营养因子含量,其中酶解法去除植酸效果最佳,糙米酵素法去除胰蛋白酶抑制因子效果最佳且有利于糙米品质的改善。  相似文献   

9.
以黑色糙米为研究对象,在单因素试验基础上,通过正交试验优化超声酶解法提取糙米多酚的工艺条件。结果表明:最佳工艺条件为料液比1∶30(g/mL)、酶添加量6%、超声时间15 min、超声功率350 W、超声温度55℃,此条件下糙米多酚提取量为5.301 mg/g。  相似文献   

10.
研究低温挤压加酶脱胚玉米粉,直接液化、糖化、发酵、蒸馏生产酒精技术,并考察了脱胚玉米粉挤压前耐高温α-淀粉酶添加量、挤出物糖化时糖化酶添加量、糖化时间、液化时耐高温α-淀粉酶添加量、发酵时酵母添加量对醪液的主要考察指标(醪液的酒精度、淀粉出酒率、残总糖)的影响规律.结果表明,本研究的挤压-糖化-发酵系统主要参数优化值对应的醪液发酵48 h的酒精度、淀粉出酒率分别为13.45%和59.21%,高于对照挤压不加酶脱胚玉米醪液的对应值13.08%和57.85%,也高于脱胚玉米传统酒精生产工艺醪液的对应值12.89%和56.6%.  相似文献   

11.
周治国  徐树来  刘利军 《农机化研究》2012,34(10):169-171,225
以提高玉米淀粉糖的质量为目的,研究了玉米淀粉在液化和糖化过程中耐高温α-淀粉酶添加量、强效复合糖化酶、时间、pH值与温度等对产品质量的影响.经参数优化和工艺改进,最终获得了DE值达到99%以上、DX值达到96%以上的高品质玉米淀粉糖浆.  相似文献   

12.
脱胚玉米添加中温酶挤出物制取葡萄糖浆试验研究   总被引:2,自引:0,他引:2  
在挤压和液化脱胚玉米时添加中温α-淀粉酶,以挤压机套筒温度、挤压原料中温α-淀粉酶添加量、液化时中温α-淀粉酶添加量、液化时间、糖化酶添加量为挤压-糖化系统参数,采用五因素五水平(1/2实施)二次正交旋转组合试验设计,研究系统参数对DE值、过滤速度和糖液化透射比的影响规律.在较优挤压-糖化系统参数下,挤压添加中温α-淀粉酶脱胚玉米制得糖化液的DE值为96.8%、过滤速度为483.6 L/(m2·h)、透射比为94.0%;未挤压脱胚玉米对照试验的DE值为72.5%、过滤速度为20.2 L/(m2·h)、透射比为90.5%.  相似文献   

13.
植物源作物酵素营养液是以天然植物组织或作物残体为原料,混合糖、酵素等发酵而成的酵素制剂,对作物具有良好的抑菌、营养和生理调节作用。随着社会对农业资源与生态环境问题的日益重视,植物源作物酵素营养液的研发和推广符合有机生态农业的发展趋势。介绍了植物源作物酵素营养液的制备工艺、成分及应用效果等方面的研究现状,展望了植物源作物酵素营养液的前景,并提出了发展建议。   相似文献   

14.
本研究结合发芽糙米加工工艺,研制开发出适合发芽糙米加工的先进适用成套设备,并在发芽糙米生产企业得到成功应用,为发芽糙米工厂化生产提供技术装备支撑。  相似文献   

15.
以花生粕为原料,采用酶-质量法探讨花生粕中可溶性膳食纤维提取工艺条件。通过单因素试验和响应曲面分析法,考察糖化酶的加酶量、酶解时间和温度对可溶性膳食纤维提取率的影响,优化提取工艺参数。结果表明:糖化酶的最佳提取工艺条件为:加酶量1.3%、温度60℃、酶解时间78min,该条件下花生粕中可溶性膳食纤维提取率为11.70%。  相似文献   

16.
根据发芽糙米γ-氨基丁酸(GABA)富集研究结果,介绍发芽糙米GABA的增殖途径,从优化浸泡发芽工艺、添加外源物质、脉冲强光照射、超声波处理、逆境胁迫等方面,介绍发芽糙米GABA的富集条件和措施,为高GABA发芽糙米的生产与加工提供借鉴和参考。  相似文献   

17.
苗敬芝 《农业机械》2013,(35):48-51
采用超声水提取法和超声结合酶法研究了红薯渣中总膳食纤维提取的工艺条件并对其功能性进行探讨。试验结果表明:超声水法最佳工艺条件为料液比1∶35、超声时间15min和超声功率250W,红薯渣中总膳食纤维提取率为69.79%;超声结合酶法最佳工艺条件为糖化酶加酶量1.2%、酸性蛋白酶加酶量1.0%、料液比1∶30、时间5min和功率200W,总膳食纤维提取率为79.36%,超声结合酶法比超声水提法提取率提高了13.71%,红薯渣中总膳食纤维持水力为889%,膨胀力为15.80mL/g。  相似文献   

18.
通过酶辅助碱溶酸沉法提取米糠蛋白,以提高米糠蛋白的提取率。利用糖化酶处理米糠蛋白,以提高产品的蛋白质含量。确定最佳的糖化酶处理条件为:酶解温度60℃、pH值4.5、酶解时间90min、加酶量0.3%和液料比3∶1。  相似文献   

19.
糙米吸湿发芽过程中微生物繁殖给发芽糙米带来安全隐患。为保障发芽糙米的安全性,研究基于分段加湿法的臭氧水灭菌预处理待发芽糙米工艺。以分段加湿后糙米为原料,研究糙米含水率、臭氧水初始质量浓度、臭氧水处理时间、臭氧水温度对灭菌率和发芽率的影响规律。采用二次正交旋转中心组合设计进行试验,建立了各因素对灭菌率和发芽率影响的数学模型。结果表明灭菌率、发芽率与各参数间回归方程极显著(P0.01),优化参数组合为糙米含水率27.5%、臭氧水初始质量浓度4.7 mg/L、臭氧水处理时间6.5 min、臭氧水温度29.5℃,该条件下灭菌率和发芽率分别为(97.49±0.11)%和(91.89±0.26)%。与分段加湿后无灭菌处理相比,臭氧水预处理后发芽糙米菌落菌体浓度降低约5.20 lg CFU/g,发芽率和γ-氨基丁酸含量分别提高约0.49%和1.23 mg/(100 g)。研究证实优化后的预处理工艺既可有效灭菌又有利于糙米发芽。  相似文献   

20.
糙米发芽前的吸水过程是导致籽粒裂纹的根本原因,制约着发芽糙米品质和口感。为降低发芽前糙米裂纹增率,探究了完整吸湿区间内各含水率水平糙米的最优吸湿速率。将糙米初始含水率至发芽含水率的完整区间分为若干子区间,在各区间内以不同加湿速率加湿至该区间目标含水率。探究各区间内裂纹增率的变化规律,建立裂纹增率与加湿速率变化规律的数学模型,以低裂纹增率为目标确定最优加湿速率。在此基础上,得出完整区间内以低裂纹增率及高效率为目标的加湿速率数学模型并试验验证。与前期分段加湿工艺相比,本优化工艺可降低发芽前糙米和发芽糙米裂纹增率(41.48±0.15)%和(43.67±0.26)%,糙米发芽率和γ-氨基丁酸含量增加(6.92±0.25)%和(25.03±0.18)%,为高品质发芽糙米的生产方法提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号