首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用静态箱/气象色谱法对南亚热带3种森林土壤地表CO2排放通量的季节动态及其对环境变化的响应规律进行了2年的连续观测,结果表明:季风常绿阔叶林、针阔叶混交林和马尾松针叶林(S L)CO2年排放总量分别为3942.2,3422.36和2163.02 gCO2.m-2·a-1,并且3种林分具有相同的季节性变化特征,排放高峰均出现在6~8月,这期间的土壤CO2排放量占全年排放总量的35.9%,38.1%和40.2%:不同森林土壤CO2排放过程对环境变化的响应有明显差异,具体体现在针叶林(PF)对温度变化的响应较阔叶林(BF)和混交林(MF)敏感,Q10值较大,而且CO2排放通量的季节变化幅度较大,表明结构单一的森林生态系统抗干扰能力较差;3种森林土壤CO2排放通量与土壤温度(Ts)、土壤含水量(Ms)和空气压力(Pa)均呈显著相关;但多元回归分析表明,空气压力对森林土壤CO2排放通量的影响并不显著;基于经验模型,以土壤5 cm处温度和土壤含水量两个指标可以分别说明阔叶林、混交林和针叶林土壤CO2排放通量变异的75.7%,77.8%和86.5%,该模型可以较好地描述受水分胁迫的土壤或干旱或半干旱土壤CO2的排放过程.  相似文献   

2.
应用静态箱/气象色谱法对南亚热带3种森林土壤地表CO2排放通量的季节动态及其对环境变化的响应规律进行了2年的连续观测,结果表明:季风常绿阔叶林、针阔叶混交林和马尾松针叶林(S+L)CO2年排放总量分别为3942.2,3422.36和2163.02 gCO2.m-2·a-1,并且3种林分具有相同的季节性变化特征,排放高峰均出现在6~8月,这期间的土壤CO2排放量占全年排放总量的35.9%,38.1%和40.2%:不同森林土壤CO2排放过程对环境变化的响应有明显差异,具体体现在针叶林(PF)对温度变化的响应较阔叶林(BF)和混交林(MF)敏感,Q10值较大,而且CO2排放通量的季节变化幅度较大,表明结构单一的森林生态系统抗干扰能力较差;3种森林土壤CO2排放通量与土壤温度(Ts)、土壤含水量(Ms)和空气压力(Pa)均呈显著相关;但多元回归分析表明,空气压力对森林土壤CO2排放通量的影响并不显著;基于经验模型,以土壤5 cm处温度和土壤含水量两个指标可以分别说明阔叶林、混交林和针叶林土壤CO2排放通量变异的75.7%,77.8%和86.5%,该模型可以较好地描述受水分胁迫的土壤或干旱或半干旱土壤CO2的排放过程.  相似文献   

3.
应用静态箱/气象色谱法对南亚热带3种森林土壤地表CO2排放通量的季节动态及其对环境变化的响应规律进行了2年的连续观测,结果表明:季风常绿阔叶林、针阔叶混交林和马尾松针叶林(S+L)CO2年排放总量分别为3942.2,3422.36和2163.02 gCO2.m-2·a-1,并且3种林分具有相同的季节性变化特征,排放高峰均出现在6~8月,这期间的土壤CO2排放量占全年排放总量的35.9%,38.1%和40.2%:不同森林土壤CO2排放过程对环境变化的响应有明显差异,具体体现在针叶林(PF)对温度变化的响应较阔叶林(BF)和混交林(MF)敏感,Q10值较大,而且CO2排放通量的季节变化幅度较大,表明结构单一的森林生态系统抗干扰能力较差;3种森林土壤CO2排放通量与土壤温度(Ts)、土壤含水量(Ms)和空气压力(Pa)均呈显著相关;但多元回归分析表明,空气压力对森林土壤CO2排放通量的影响并不显著;基于经验模型,以土壤5 cm处温度和土壤含水量两个指标可以分别说明阔叶林、混交林和针叶林土壤CO2排放通量变异的75.7%,77.8%和86.5%,该模型可以较好地描述受水分胁迫的土壤或干旱或半干旱土壤CO2的排放过程.  相似文献   

4.
利用LI-6400CO2分析系统测定了长白山红松针阔叶混交林生态系统土壤呼吸、乔木和灌木树干和枝条的呼吸、植物叶片光合与呼吸.同步监测森林小气候气象因子,建立土壤、树干、叶片与气象因子间的模型.根据红松针阔叶混交林植被群落特性,估算红松针阔叶混交林森林生态系统不同组分CO2通量.利用涡度相关技术监测红松针阔叶混交林净生态系统交换量.探讨温度、光合有效辐射对森林生态系统CO2通量的影响.通过分析发现,在当年的气候条件下,该森林净生态系统交换量主要受土壤呼吸和叶片光合的影响.红松针阔叶混交林净生态系统交换量全年变化范围在-4.67~13.80 μmol·m-2·s-1.该森林生态系统CO2通量在冬季和夏季里平均分别为-2.0和3.9 μmol·m-2·s-1 (24 h平均值).乔木、灌木和草本的初级生产力分别占阔叶红松林总初级生产力的89.7%,3.5%,6.8%.土壤呼吸是森林生态系统中最主要的CO2排放源,约占红松针阔叶混交林生态系统CO2排放的69.7%,植物叶片和枝干分别占15.2%和15.1%.在生长季和非生长季中红松针阔叶混交林净生态系统交换量分别占全年CO2通量的56.8%和43.2%.自养呼吸占总初级生产力的比值(RaGPP)为0.52(NPPGPP=0.48).森林生态系统地下当年碳积累量占总初级生产力的52%.土壤呼吸占总初级生产力的60%.红松针阔叶混交林NPP为769.3 gC·m-2·a-1.该森林净生态系统交换量(NEE)为229.51 gC·m-2·a-1.涡度相关技术获得的该森林生态系统NEE低于箱式法获得的19.8%.  相似文献   

5.
作为中国陆地生态系统通量观测网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲亚热带人工针叶林和长白山温带阔叶红松混交林生态系统CO2通量进行了长期观测.利用以温度和水分为驱动变量的连乘形式以及Q10形式的生态系统呼吸模型,分析了2003年中国亚热带和温带森林生态系统呼吸的季节变化及其环境响应特征.研究结果表明:(i)温度是控制生态系统呼吸特征的主导因素,温度和水分的协同作用共同控制着生态系统呼吸,利用这两个变量基本上可以描述生态系统呼吸的季节变异特征;对受到干旱胁迫的生态系统而言,水分条件也可能转化成为生态系统呼吸的主导因素.(ii)模型对比分析表明,在干燥的气候条件下,Q10模型对水分的响应能力比连乘模型更敏感,基于Q10模型可以准确描述生态系统呼吸的季节模式.(iii)基于Q10模型估算的千烟洲亚热带人工针叶林和长白山温带阔叶红松混交林生态系统呼吸年总量分别为1197和1268gC·m?2,而基于连乘模型估算的生态系统呼吸年总量分别为1209和1303gC·m?2.  相似文献   

6.
鼎湖山森林地表CO_2通量及其影响因子的研究   总被引:15,自引:4,他引:15  
利用静态箱-气相色谱法对鼎湖山3种主要森林类型地表CO2通量及其主要影响因子进行了为期一年的观测,比较和分析了不同林型间地表CO2通量的季节变化,凋落物对地表CO2通量的贡献以及地表CO2通量与土壤温度和土壤含水量的关系.3种林型地表CO2通量都有相似的季节变化模式,即雨季较高而旱季较低,年均CO2通量按从大到小排序为:季风林>混交林>松林;3种林型由凋落物分解释放的CO2对地表CO2通量的贡献均相当显著,就全年平均而言来源于凋落物分解的CO2通量占总的地表CO2通量的比例按季风林、混交林和松林的顺序分别为:24.43%,41.75%和29.23%;3种林型不同处理地表CO2通量均与地下5cm土壤温度呈显著指数相关,Q10值变化范围在1.86~3.24之间;当土壤含水量全年变异系数较大时,地表CO2通量与土壤含水量的相关性较好.  相似文献   

7.
青藏高原高寒灌丛生长季和非生长季CO_2通量分析   总被引:2,自引:4,他引:2  
采用涡度相关法对青藏高原高寒灌丛CO2通量的观测表明,青藏高原高寒灌丛生长季和非生长季节CO2通量变化特征差异极为显著.生长季节(5~9月)08:00~19:00为CO2净吸收,19:00~08:00为CO2净排放,CO2通量峰值一般出现在12:00左右,6~9月CO2净吸收峰值分别为0.71,1.19,1.46,0.67gCO2·m?2·h?1;相对于温度,生长季CO2通量振幅更受光合有效辐射变化的影响;就月变化模式而言,8月是生长季CO2净吸收最高月份,月净吸收量达到247gCO2·m?2,整个生长季CO2净吸收的总量达583gCO2·m?2.非生长季节(1~4月及10~12月)CO2通量变化振幅极小,最大CO2净排放通量为0.30gCO2·m?2·h?1(4月),除11:00~18:00左右少量的CO2净排放以外,其余时段CO2通量均接近于零;非生长季CO2通量日变化规律,尤其是白昼CO2通量与土壤温度变化呈显著的正相关关联;4月是全年CO2净排放的最高月份,全月净排放量为105gCO2·m?2,整个非生长季CO2净排放为356gCO2·m?2.  相似文献   

8.
鼎湖山常绿针阔叶混交林CO2通量估算   总被引:2,自引:0,他引:2  
鼎湖山通量站是中国通量网络(ChinaFLUX)中4个森林站之一,采用开路涡度相关方法,对南亚热带常绿针阔叶混交林进行生态系统尺度的CO2通量长期定位观测.利用2003,2004年2整年观测资料,分析该生态系统CO2通量时间变化特征及其受环境因子的制约关系.通过坐标转换、WPL订正和质量控制后,发现本通量站存在明显的夜间泄漏问题,因此采用MichaelisMenten模型,利用白天(PAR>1.0 μmol-1 Photons·m-2·s-1)湍流充分条件下(u*>0.2 m·s-1)的通量资料,逐月拟合净生态系统CO2交换NEE对光合有效辐射PAR的响应,利用拟合Michaelis-Menten方程得到的生态系统呼吸Reco,建立Reco与5 cm土壤温度的指数关系,借此反演夜间呼吸.主要结论包括(I)逐月拟合的光能利用效率α平均为0.0027(±0.0011) mgCO2·μmol-1 Photons,最大光合速率Amax平均为1.102(±0.288) mgCO2·m-2·s-1,α与Amax季节性变化规律均不明显,表明林内旱季没有明显的缺水和低温胁迫存在,这与南亚热带常绿混交林叶面积指数(LAI)季节性变化较小的特点是一致的.(ii)生态系统呼吸月总量平均为95.3(±21.1) gC·m-2month-1,约占生态系统总初级生产力GPP的68%.NEE月总量平均为-43.2(±29.6) gC·m-2·month-1,大部分月份NEE为负号,表明该生态系统全年均具有较强的碳汇功能.估算得到2003,2004年NEE总量分别为-563,-441.2 gC·m-2·a-1,占GPP的32%.  相似文献   

9.
青藏高原高寒草原生态系统土壤CO_2排放及其碳平衡   总被引:15,自引:4,他引:15  
青藏高原海拔高,气压低,太阳辐射强,气候寒冷,其主体部分为海拔4000m以上的高寒地区.由于严酷的自然条件的限制,对高海拔地区的土壤CO2排放的研究非常少,尤其对海拔4500m以上的高寒草原生态系统土壤的CO2排放研究更不多见.本试验采用静态箱式法,通过对高原高寒草原生态系统(西藏:班戈县,90.01°E,31.23°N,海拔4800m)土壤CO2排放的2周年的定点观测,结果表明:青藏高原高寒草原生态系统土壤CO2排放的日变化呈现单峰曲线,CO2排放最高点出现在当地时间的14︰00左右,最低点出现在当地时间的凌晨5︰00左右,在夏季这种特征尤其明显;高寒草原生态系统土壤CO2排放亦呈现明显的季节变化,夏季增强,冬季明显减弱;根据计算,高寒草原生态系统土壤CO2排放年日平均值和年总量分别为21.39mgCO2·m?2·h?1和187.46gCO2·m?2·a?1,结合高寒草地净生产量的观测结果,表明青藏高寒草原生态系统是碳汇.  相似文献   

10.
采用室内土柱培养的方法,研究了温带成熟阔叶红松混交林和次生白桦林土壤在不同的湿度(55%和80%WFPS,土壤充水孔隙率)和不同的氮素供应(NH4Cl和KNO3,4.5 g N m-2)条件下外源碳添加(葡萄糖,6.4 g C m-2)对森林土壤异养呼吸和微生物碳的激发效应.结果表明:培养期间次生白桦林土壤对照处理CO2累积排放量(5.44~5.82 g CO2-C m-2)显著高于阔叶红松混交林对照处理(2.86~3.36 g CO2-C m-2).随着湿度的增加,次生白桦林土壤对照处理CO2累积排放量显著降低,而阔叶红松混交林土壤对照处理却显著增加(P0.05).单施NH4Cl或KNO3处理培养期内两种林分土壤CO2累积排放量降低9.2%~21.6%(P0.05),低湿度次生白桦林土壤降低最大.单施葡萄糖显著提高两种林分土壤异养呼吸、微生物碳量和微生物代谢熵.培养期间施加葡萄糖所增加的土壤CO2累积排放量(8.7~11.7 g C m-2)和土壤微生物量(7.4~23.9 g C m-2)显著大于施加的葡萄糖含碳量(6.4 g C m-2),这可能是由土壤固有有机碳分解释放引起的.培养期间由葡萄糖引起的土壤CO2排放速率和最大排放速率不仅受到湿度及其与林分交互影响(P0.001),还受到铵态氮与林分交互影响(P0.001)和林分、湿度和铵态氮三者交互影响(P0.05).施加铵态氮显著抑制了次生白桦林土壤由葡萄糖引起的微生物碳,而施加硝态氮却无显著效应.施加两种形态的氮均显著促进高湿度阔叶红松混交林土壤由葡萄糖引起的微生物碳(P0.05).经过量化由葡萄糖引起的土壤活性碳库、微生物碳及CO2排放量,发现葡萄糖对温带森林土壤异养呼吸和微生物碳的刺激效应与植被类型、湿度、外源氮供给及其形态显著相关.  相似文献   

11.
千烟洲人工针叶林CO_2通量季节变化及其环境因子的影响   总被引:10,自引:8,他引:10  
对千烟洲人工针叶林碳通量与环境影响因子进行了分析,研究了23m和39m两层高度碳通量的时空变化特征,对2003年该生态系统的碳收支状况进行了初步估算.研究结果表明:影响净生态系统交换(NEE)的环境因子主要是光合有效辐射(PAR)、土壤温度等.白天(有光期)的NEE对于PAR的响应符合直角双曲线方程.通过摩擦速度的阈值对夜间数据进行了筛选,夜间(无光期)的NEE对于温度和饱和水汽压差的响应呈明显的指数关系.该生态系统全年各个月均表现为碳汇;碳通量各月的平均日变化和季节变化趋势明显.2003年各月NEE值以5,6月最高,日最大值为?0.61~?0.67mg·CO2·m?2·s?1;盛夏7月遭遇了严重伏旱及持续高温,NEE值约为5~6月的2/3,日最大值为?0.40mgCO2·m?2·s?1;秋末到冬季由于持续干旱,NEE为全年最低,日最大值为?0.29~?0.35mg·CO2·m?2·s?1.2003全年碳收支估算值在?0.553~?0.645kgC·m?2之间.  相似文献   

12.
冻结能够增加土壤二氧化碳和氧化亚氮排放以及活性碳和氮的释放.然而,目前很少报道土壤冻结处理后两种温室气体排放变化的差异以及与土壤属性的关联性.论文研究了土壤冻结强度和冻结时间对中国东北成熟阔叶红松混交林和临近的次生白桦林土壤二氧化碳(CO2)和氧化亚氮(N2O)、氮素净矿化量、微生物量和可浸提的碳和氮含量的影响.两种林地土壤具有不同的微生物量和容重.取上述两种温带林地0~5和5~10 cm原状土柱,分别进行?8,?18和?80℃冻结处理10和145 d,然后各自在10℃下融化培养21 d.未进行冻结前处理的原状土柱样品,10℃培养21 d为对照.融化后土壤N2O和CO2排放量随林分类型、土壤深度和冷冻处理而发生变化,该差异归因于冻结后所致的土壤充水孔隙度(WFPS)和物质有效性变化.土壤湿度大约为80%WFPS时,融化期森林土壤N2O排放量最大,而森林土壤CO2排放量却随土壤湿度增加而显著地增加.冻结处理后,土壤溶解性有机碳含量和CO2排放量均随冻结时间延长而增加,这与土壤微生物碳含量降低相一致;冻结温度显著影响森林土壤氮素净矿化量和净氨化量以及氧化亚氮排放量.土壤N2O排放量与土壤p H和容重呈显著的负相关关系,却与土壤K2SO4浸提的硝态氮含量和氮素净氨化量呈显著的正相关关系.土壤CO2排放量与土壤氮素净矿化量和净氨化量呈显著的正相关关系.因此,基于较宽范围的冻结温度和冻结时间的观测结果,融化后土壤N2O和CO2排放量主要依赖于冻结处理后氮素净矿化量、释放的物质有效性以及有关通气性的土壤属性变化.  相似文献   

13.
利用静态暗箱法对内蒙古半干旱羊草草原2001~2002年不同物候期原状群落与土壤呼吸通量日变化进行了野外定位试验研究, 并就水热因子(气温、表层地温、土壤表层含水量)及生态因子(地上活体现存量、地下生物量、凋落物现存量)对原状群落和土壤呼吸通量日变化规律及日呼吸量差异的贡献进行了相应的统计分析. 结果表明: 原状群落和土壤呼吸具有明显的日变化规律, 不同物候期呼吸通量的日变化模式基本相同, 环境因子的变化通常只对CO2排放强度产生影响, 而对草地CO2排放通量的日变化模式影响较小; 整个羊草草原在不同物候期原状群落日呼吸总量的变化范围为1.34~10.13 g·m&#8722;2, 土壤日呼吸总量的变化范围为0.98~5.17 g·m&#8722;2; 原状群落呼吸和土壤呼吸通量的日变化均与气温及地表温度显著相关(p<0.05)或极显著相关(p<0.01), 而与表层5 cm以及10 cm土壤温度相关性较弱; 多元回归分析表明, 不同物候期原状群落日呼吸量的差异约80%是由地上活体现存量的差异引起的, 其余各因子的变化能够共同解释原状群落日呼吸量变化的20%左右; 而不同物候期土壤日呼吸量的变异约有83%左右是由0~20 cm地下生物量的变化引起的, 此外, 表层土壤含水量也是影响羊草草原土壤日呼吸量变异的重要环境因子, 但其与土壤日呼吸量的偏相关系数未达到0.05的显著性水平.  相似文献   

14.
内蒙古羊草草原碳交换季节变异及其生态学解析   总被引:1,自引:1,他引:1  
用涡度相关技术测量了内蒙古羊草草原2003和2004年两个生长季生态系统CO2交换通量.观测表明,两个生长季的CO2通量存在明显差异.内蒙古羊草草原生态系统CO2通量的日变化特征根据其吸收高峰出现的时间可以分为两种,一种具有两个吸收高峰,其特点是在午间出现了碳交换通量的降低,这种现象与植物光合作用的午间降低现象一致;另一种类型是只有一个吸收高峰出现在午间.CO2通量的吸收和排放的日最大值在两个生长季出现的时间有所不同,2003年均发生于7月,分别为-7.4 g·m-2·d-1(白天)和5.4 g·m-2·d-1(夜间),而2004年发生在8月,分别为-12.8 g·m-2·d-1(白天)和5.8 g·m-2·d-1(夜间).2003年128 d的植物生长期内,整个生态系统白天固定了294.66 g CO2·m-2,同时期夜间释放了333.14 g CO2·m-2;在2004年116 d的生长期内白天固定了467.46 g CO2·m-2,夜间释放了437.17 g CO2·m-2.根据两个生长季的观测数据分析表明,在影响生态系统碳交换的生态因子中,水分和光合有效辐射(PAR)是两个重要的生态因子.连续的降雨会引起生态系统碳交换能力的降低;在适宜的土壤水分条件下,决定白天CO2通量的主要是PAR,二者呈双曲线关系;土壤水分胁迫情况下,CO2通量显著低于适宜土壤湿度状况下的CO2通量,且当PAR>1200 μmol·m-2·s-1时,生态系统出现了光饱和现象;CO2通量明显地被高饱和水汽压差(VPD)所抑制;夜间CO2通量主要依赖于土壤温度与土壤水分有效性的协调作用.  相似文献   

15.
冬季夜间负净CO2通量的发生机制及合理处置的研究对于准确估算北方森林碳代谢状态具有重要影响.通过对长白山阔叶红松林2002年11月~2003年4月开路涡动相关系统获得的CO2净交换通量及相应交换过程的分析,发现(ⅰ)夜间负CO2通量主要发生在强风速条件下;(ⅱ)强风速条件下的压力脉动及平流过程是夜间负净CO2通量主要原因,鉴于对压力脉动及平流过程与CO2净交换同步实时监测的困难,提出了可操作的强风条件下CO2净交换通量的上界摩擦风速(UU)修正方法,长白山阔叶红松林的UU=0.4m·s?1,这个修正也适用于白天;(ⅲ)UU修正解决了长白山阔叶红松林冬季夜间净交换负总量问题.  相似文献   

16.
西双版纳热带季节雨林的土壤呼吸研究   总被引:14,自引:5,他引:14  
2003年1月~2004年1月,用静态箱-气相色谱法对西双版纳热带季节雨林的土壤呼吸进行了研究.实验设3个处理,处理A:土壤;处理B:土壤+凋落物层;处理C:土壤+凋落物层+地表低矮植物.研究表明,土壤呼吸速率年变化在12~2月呼吸速率最低,7月出现明显的呼吸高峰,4月和10月还分别存在两个小峰.不同处理的土壤呼吸速率不同,实测平均值C>B>A,分别为14642,12807和9532mgCO2·m?2·h?1,差异达到1%显著水平.因西双版纳温度日变化不大,土壤呼吸速率日变化不明显.土壤呼吸速率与土壤含水量呈凸型抛物线型相关,达1%显著水平,水分含量在35%~40%范围时,土壤呼吸速率较大.土壤呼吸速率与5cm地温呈指数相关,达1%显著水平.根据计算,西双版纳热带季节雨林土壤呼吸的Q10为2.03~2.36,与文献所报道的热带土壤Q10接近.根据模型计算得到2003年的土壤+凋落物层+地表低矮植物的CO2排放量为5.34kgCO2·m?2·a?1,其中土壤为3.48kgCO2·m?2·a?1,占65.2%,凋落物层为1.19kgCO2·m?2·a?1,占22.3%,地表低矮植物为0.67kgCO2·m?2·a?1,占12.5%.  相似文献   

17.
利用涡度相关技术,对2003年和2004年青藏高原金露梅灌丛草甸生态系统CO2通量观测表明,金露梅灌丛草甸生态系统CO2通量日变化、年变化明显,且日变化暖季大于冷季.CO2净交换量在年内的4,9月为两个释放高峰期,以7和8月的吸收量最大.2年的CO2吸收分别为231.4和274.8 gCO2·m-2,平均为253.1 gCO2·m2,在区域起着重要的碳汇功能.CO2日交换量与温度、辐射等气象因素具有显著的负相关关系.受年际间气候差异影响,两年CO2释放和吸收高峰出现及维持时间具有微小的差异.比较发现,各年白天CO2通量受光合辐射的控制作用基本相同,温度条件似乎成为影响CO2通量的重要环境因子.在植物生长季温度过高明显时,会降低碳的吸收能力.其原因可能是由于高温度条件下土壤呼吸增强有关引起的.生物量测定表明,2003和2004年的地上和地下生物年净固碳量分别为544.0和559.4 gC·m-2,与CO2年净交换吸收碳量(分别为63.1和74.9 gC·m-2)基本趋势一致.  相似文献   

18.
气象条件对长白山阔叶红松林CO_2通量的影响   总被引:11,自引:8,他引:11  
利用涡动相关技术观测资料和同步的气象要素监测资料,探讨了温度、光合有效辐射和空气饱和差对长白山阔叶红松林生态系统CO2通量的影响,结果表明,白天CO2通量主要受光合有效辐射的制约,二者符合Michaelis-Menten方程,同时空气饱和差也有一定的影响,空气越干燥,光合吸收能力下降越明显,这种敏感性在6月较显著.该生态系统的暗呼吸强度主要受土壤温度的影响,二者符合指数关系,另外,土壤温度对暗呼吸的影响还与季节有关,在相同土壤温度下,4~7月的呼吸强度比8~11月的高.日净碳交换与日平均气温符合指数关系.通过CO2通量和温度,光合有效辐射的年度变化规律发现,森林生态系统碳交换的季节变化是温度和光照综合作用的结果,其中6月份碳汇强度最大,7,8月次之,全年的净碳吸收量为?184gC·m?2.  相似文献   

19.
为揭示自末次盛冰期以来中国南方植被的变化规律,文章在前人工作的基础上,通过在一些研究薄弱区布钻取芯,建立钻孔剖面高分辨率的时间标尺和胞粉序列,以恢复研究区过去约2万年以来的植被变化过程.文中分别给出中国南方18、9和6ka BP前后的植被分带图和各区域植物的分布特征.研究表明:18ka BP前的植被带分布与现在存在着明显的差异,其中西部由西北向东南依次为寒温性针叶林与高寒草甸草原带、温带针阔叶混交林带/暖温带落叶阔叶林带,中东部由北向南依次分布温带针阔叶混交林带、暖温带落叶阔叶林带,以及北亚热带常绿、落叶阔叶混交林带;9ka BP前后的植被面貌发生了明显的变化,除西北部局部地处山地温性针阔叶混交林带外,其他地区由北向南依次分布北亚热带常绿、落叶阔叶混交林亚带,中亚热带典型常绿阔叶林亚带,南亚热带季风常绿阔叶林亚带/热带季雨林和雨林带;6ka BP前后的植被面貌与9ka BP前后的变化不大,但各个植被带的北缘略有北移,反映当时总体气候变得更加温暖.中国南方2万年以来的植被变化,很大程度上受到环境变迁的驱使,其中气候变化为主要影响因素,人类活动的影响在后期变得越来越明显,而在长江下游和三角洲地区,海平面变化对植物的分布同样构成一定的影响.  相似文献   

20.
鼎湖山通量站是中国通量网络(ChinaFLUX)中4个森林站之一,采用开路涡度相关方法,对南亚热带常绿针阔叶混交林进行生态系统尺度的CO2通量长期定位观测.利用2003,2004年2整年观测资料,分析该生态系统CO2通量时间变化特征及其受环境因子的制约关系.通过坐标转换、WPL订正和质量控制后,发现本通量站存在明显的夜间泄漏问题,因此采用Michaelis- Menten模型,利用白天(PAR>1.0μmol-1 Photons·m-2·s-1)湍流充分条件-F(u*>0.2 m·s-1)的通量资料,逐月拟合净生态系统CO2交换NEE对光合有效辐射PAR的响应,利用拟合Michaelis-Menten方程得到的生态系统呼吸Reco,建立Reco与5 cm土壤温度的指数关系,借此反演夜间呼吸.主要结论包括:(i)逐月拟合的光能利用效率a平均为0.0027(±0.0011)mgCO2·μmol-1 Photons,最大光合速率Amax平均为1.102(±0.288)mgCO2·m-2·s-1,a与Amax季节性变化规律均不明显,表明林内旱季没有明显的缺水和低温胁迫存在,这与南亚热带常绿混交林叶面积指数(LAI)季节性变化较小的特点是一致的.(ii)生态系统呼吸月总量平均为95.3(±21.1)gC·m-2month-1,约占生态系统总初级生产力GPP的68%.NEE月总量平均为-43.2(±29.6)gC·m-2·month-1,大部分月份NEE为负号,表明该生态系统全年均具有较强的碳汇功能.估算得到2003,2004年NEE总量分别为-563, -441.2 gC·m-2·a-1,占GPP的32%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号