首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 104 molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.  相似文献   

2.
A Pichia pastoris cell-surface display system was constructed using the Sed1 anchor system that has been developed in Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was used as the model protein and was fused to an anchor that consisted of 338 amino acids of Sed1. The resulting fusion protein CALBSed1 was expressed under the control of the alcohol oxidase 1 promoter (pAOX1). Immunofluorescence microscopy of immunolabeled Pichia pastoris revealed that CALB was displayed on the cell surface. Western blot analysis showed that the fusion protein CALBSed1 was attached covalently to the cell wall and was highly glycosylated. The hydrolytic activity of the displayed CALB was more than 220 U/g dry cells after 120 h of culture. The displayed protein also exhibited a higher degree of thermostability than free CALB.  相似文献   

3.
We isolated the lipase B from Candida antarctica CBS 6678 (CALB CBS6678) and successfully constructed CALB-displaying yeast whole-cell biocatalysts using the Flo1p short (FS) anchor system. For the display of CALB on a yeast cell surface, the newly isolated CALB CBS6678 exhibited higher hydrolytic and ester synthesis activities than the well-known CALB, which is registered in GenBank (Z30645). A protease accessibility assay using papain as a protease showed that a large part of CALB, approximately 75%, was localized on an easily accessible part of the yeast cell surface. A comparison of the lipase hydrolytic activities of yeast whole cells displaying only mature CALB (CALB) and those displaying mature CALB with a Pro region (ProCALB) revealed that mature CALB is preferable for yeast cell surface display using the Flo1p anchor system. Lyophilized yeast whole cells displaying CALB were applied to an ester synthesis reaction at 60°C using adipic acid and n-butanol as substrates. The amount of dibutyl adipate (DBA) produced increased with the reaction time until 144 h. This indicated that CALB displayed on the yeast cell surface retained activity under the reaction conditions.  相似文献   

4.
We constructed a novel protein-purification system in which Saccharomyces cerevisiae with a protein displayed on the cell surface is harvested and the displayed protein is then cleaved from the cell surface. GFPuv was used as a model protein in this cell surface engineering experiment. In this system, the C-terminal 320 amino acids of α-agglutinin were bound to the C-terminal of GFPuv for display on the cell surface. In this novel system, the insertion of the recognition sequence-encoding gene of protease factor Xa between GFPuv and α-agglutinin was successfully carried out. The GFPuv, displayed by the insertion, was successfully cleaved from yeast cell surface by treatment with factor Xa, and could be easily recovered. By removing such a protease with well-known properties, the displayed protein could be isolated and purified with relative ease.  相似文献   

5.
Candida antarctica lipase B (CALB) and C. antarctica lipase B fused to a cellulose-binding domain (CBD-CALB) were expressed functionally in the methylotrophic yeast Pichia pastoris. The cellulose-binding domain originates from cellulase A of the anaerobic rumen fungus Neocallimastix patriciarum. The genes were fused to the α-factor secretion signal sequence of Saccharomyces cerevisiae and placed under the control of the alcohol oxidase gene (AOX1) promoter. The recombinant proteins were secreted into the culture medium reaching levels of approximately 25 mg/L. The proteins were purified using hydrophobic interaction chromatography and gel filtration with an overall yield of 69%. Results from endoglycosidase H digestion of the proteins showed that CALB and CBD-CALB were N-glycosylated. The specific hydrolytic activities of recombinant CALB and CBD-CALB were identical to that reported for CALB isolated from its native source. The fusion of the CBD to the lipase resulted in a greatly enhanced binding toward cellulose for CBD-CALB compared with that for CALB.  相似文献   

6.
The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and α-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the α-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast α factor, respectively, were fused with the gene encoding the C-terminal half of the yeast α-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and α-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and α-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase. Received: 16 June 1998 / Received last revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

7.
An engineered yeast with emission of fluorescence from the cell surface was constructed. Cell surface engineering was applied to display a visible reporter molecule, green fluorescent protein (GFP). A glucose-inducible promoter GAPDH as a model promoter was selected to control the expression of the reporter gene in response to environmental changes. The GFP gene was fused with the gene encoding the C-terminal half of α-agglutinin of Saccharomyces cerevisiae having a glycosylphosphatidylinositol anchor attachment signal sequence. A secretion signal sequence of the fungal glucoamylase precursor protein was connected to the N-terminal of GFP. This designed gene was integrated into the TRP1 locus of the chromosome of S. cerevisiae with homologous recombination. Fluorescence microscopy demonstrated that the transformant cells emitted green fluorescence derived from functionally expressed GFP involved in the fusion molecule. The surface display of GFP was further verified by immunofluorescence labeling with a polyclonal antibody (raised in rabbits) against GFP as the first antibody and Rhodamine Red-X-conjugated goat anti-rabbit IgG as the second antibody which cannot penetrate into the cell membrane. The display of GFP on the cell surface was confirmed using a confocal laser scanning microscope and by measuring fluorescence in each cell fraction obtained after the subcellular fractionation. As GFP was proved to be displayed as an active form on the cell surface, selection of promoters will endow yeast cells with abilities to respond to changes in environmental conditions, including nutrient concentrations in the media, through the emission of fluorescence. Received: 23 August 1999 / Received revision: 16 November 1999 / Accepted: 29 November 1999  相似文献   

8.
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.  相似文献   

9.
The neutralizing epitope (K-COE) of the spike protein from a Korean strain of porcine epidemic diarrhea virus (PEDV) has been shown to prevent and foster an immune response to PED, when orally adjusted. The cell surface of the budding yeast,Saccharomyces cerevisiae, was engineered to anchor the K-COE on the outer layer of the cell, and consequently, the altered yeast was applied as a dietary complement for animal feed, with immunogenic functions. In this study, the K-COE gene (K-COE) of the Korean strain of PEDV with the signal peptide of rice amylase 1A (Ramy 1A), was fused with the gene encoding the carboxyterminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a mating associated protein that is anchored covalently to the cell wall. The glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter was selected in order to direct the expression of the fusion construct, and the resulting recombinant plasmid was then introduced intoS. cerevisiae. The surface display of K-COE was visualized via confocal microscopy using a polyclonal antibody against K-COE as the primary antibody, and FITC (fluorescein isothiocyanate)-conjugated goat anti-mouse IgG as the secondary antibody. The display of the K-COE on the cell surface was further verified via Western blot analysis using the cell wall fraction after the administration of α-1,3-glucanase/PNGase F/β-mannosidase treatment.  相似文献   

10.
The whole-cell biocatalyst displaying Candida antarctica lipase B (CALB) on the yeast cell surface with α-agglutinin as the anchor protein was easy to handle and possessed high stability. The lyophilized CALB-displaying yeasts showed their original hydrolytic activity and were applied to an ester synthesis using ethanol and l-lactic acid as substrates. In water-saturated heptane, CALB-displaying yeasts catalyzed ethyl lactate synthesis. The synthesis efficiency increased depending on temperature and reached approximately 74% at 50°C. The amount of l-ethyl lactate increased gradually. l-Ethyl lactate synthesis stopped at 200 h and restarted after adding of l-lactic acid at 253 h. It indicated that CALB-displaying yeasts retained their synthetic activity under such reaction conditions. In addition, CALB-displaying yeasts were able to recognize l-lactic acid and d-lactic acid as substrates. l-Ethyl lactate was prepared from l-lactic acid and d-ethyl lactate was prepared from d-lactic acid using the same CALB-displaying whole-cell biocatalyst. These findings suggest that CALB-displaying yeasts can supply the enantiomeric lactic esters for preparation of useful and improved biopolymers of lactic acid.  相似文献   

11.
A novel surface-engineered strain of yeast Pichia pastoris was constructed that displays at its surface Kluyveromyces lactis Yellow Enzyme (KYE) fused to the C-terminal half of Saccharomyces cerevisiae -agglutinin. The expression of the fusion protein was controlled by the AOX1-promoter. The new strain showed an increased sorption of the xenoestrogen Bisphenol A (BPA). It was shown that sorption of BPA depended on the presence of methanol in the growth medium and on the pH of the binding assays. The binding kinetics were typical for binding at a surface. The present results demonstrate that the -agglutinin surface display system can be used in the yeast P. pastoris.  相似文献   

12.
We tried genetically to immobilize cellulase protein on the cell surface of the yeast Saccharomyces cerevisiae in its active form. A cDNA encoding FI-carboxymethylcellulase (CMCase) of the fungus Aspergillus aculeatus, with its secretion signal peptide, was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The plasmid constructed containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase activity was detected in the cell pellet fraction. The CMCase protein was solubilized from the cell wall fraction by glucanase treatment but not by sodium dodecyl sulphate treatment, indicating the covalent binding of the fusion protein to the cell wall. The appearance of the fused protein on the cell surface was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. These results proved that the CMCase was anchored on the cell wall in its active form. Received: 19 March 1997 / Received revision: 19 May 1997 / Accepted: 1 June 1997  相似文献   

13.
A Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE) was constructed and its bioactivity was studied. The modified Bombyx mori acetylcholinesterase gene (bmace) was fused with the anchor protein (AGα1) from Saccharomyces cerevisiae and transformed into P. pastoris strain GS115. The recombinant strain harboring the fusion gene bmace-AGα1 was induced to display BmAChE on the P. pastoris cell surface. Fluorescence microscopy and flow cytometry assays revealed that the BmAChE was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity of the displayed BmAChE was detected by the Ellman method at 787.7 U/g (wet cell weight). In addition, bioactivity of the displayed BmAChE was verified by inhibition tests conducted with eserine, and with carbamate and organophosphorus pesticides. The displayed BmAChE had an IC50 of 4.17×10−8 M and was highly sensitive to eserine and five carbamate pesticides, as well as seven organophosphorus pesticides. Results suggest that the displayed BmAChE had good bioactivity.  相似文献   

14.
Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface.  相似文献   

15.
The HuIFNA16, HuIFNB1, and BoIFNG genes encoding human α16, β-interferons and bovine γ-interferon were cloned under the control of the yeast Pichia pastoris AOX1 gene promoter. The yeast strains producing heterologous interferons intracellularly and extracellularly were constructed. There was no effect of high level of heterologous protein synthesis on the yeast P. pastoris cell growth, unlike yeast Saccharomyces cerevisiae. The considerable part of the heterologous interferons was detected in the yeast P. pastoris soluble protein fraction but not in the “inclusion bodies.” The treatment of human β-interferon with endoglycosidase H showed that protein was expressed in glycosylated and unglycosylated forms. On the strength of these data, the hypothesis was suggested that the more effective heterologous gene expression in yeast P. pastoris and enhanced resistance of the methylotrophic yeast to negative effects of recombinant proteins was due to the special features of its metabolism.  相似文献   

16.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

17.
We have developed a novel Escherichia coli cell surface display system by employing PgsA as an anchoring motif. In our display system, C-terminal fusion to PgsA anchor protein from Bacillus subtilis was used. The enzymes selected for display were α-amylase (AmyA) from Streptococcus bovis 148 and lipase B (CALB) from Candida antarctica. The molecular mass values of AmyA and CALB are approximately 77 and 34 kDa, respectively. The enzymes were displayed on the surface as a fusion protein with a FLAG peptide tag at the C terminus. Both the PgsA-AmyA-FLAG and PgsA-CALB-FLAG fusion proteins were shown to be displayed by immunofluorescence labeling using anti-FLAG antibody. The displayed enzymes were active forms, and AmyA and CALB activities reached 990 U/g (dry cell weight) and 4.6 U/g (dry cell weight), respectively. AmyA-displaying E. coli cells grew utilizing cornstarch as the sole carbon source, while CALB-displaying E. coli cells catalyzed enantioselective transesterification, indicating that they are effective whole-cell biocatalysts. Since a target enzyme with a size of 77 kDa and an industrially useful lipase have been successfully displayed on the cell surface of E. coli for the first time, PgsA protein is probably a useful anchoring motif to display various enzymes.  相似文献   

18.
Phytase is widespread in nature. It has been used as a cereal feed additive that can enhance the phosphorus and mineral absorption in monogastric animals to reduce the level of phosphorus output in manure. Phytase of Peniophora lycii is a 6′-phytase, which owns high specific activity. To achieve a high expression level of 6′-phytase in Pichia pastoris, the 1,230-bp phytase gene of P. lycii was synthesized and optimized for codon usage, G+C content, as well as mRNA secondary structures. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the synthetic signal peptide (designated MF4I), which is a codon-modified Saccharomyces cerevisiae mating factor α-prepro-leader sequence, were used to transform P. pastoris. The P. pastoris strain that expressed the modified phytase gene (phy-pl-sh) with MF4I sequence produced 12.2 g phytase per liter of fluid culture, with the phytase activity of 10,540 U ml−1. The yield of the modified phytase gene, with bias codon usage and MF4I signal, is 4.4 times higher than that of the wild type gene with MF4I signal and 13.6 times higher than that of the wild type gene with wild type S. cerevisiae signal. The recombinant phytase had one optimum pH (pH 4.5) and an optimum temperature of 50°C. The P. pastoris strain expressed the modified 6-phytase gene, with the MF4I signal peptide showing great potential as a commercial phytase production system.Electronic Supplementary MaterialSupplementary material is available for this article at  相似文献   

19.
To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3′-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94?% CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64?% CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170?% hydrolytic activity and 155?% synthetic activity compared with strain KCSe1 as well as 144?% hydrolytic activity and 121?% synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124?% hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.  相似文献   

20.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast,Saccharomyces cerevisiae by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) ofAspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast α-agglutinin, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced intoS. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号