首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
超声波强化浸出(PUL法)金生产应用可行性研究   总被引:1,自引:0,他引:1  
赵文焕 《矿冶》1996,5(4):51-54,40
本文重点叙述超声波强化金矿氰化浸出的扩大试验和工业试验研究结果,所研制的强化反应釜完全可以起到强化浸出作用,它可使易浸金矿中的金强化浸出0.5h与常规浸出22h金的浸出率相当,达93%~95%。对难浸金矿中的金强化浸出0.5h,金浸出率较常规浸出22h金浸出率提高21%~24%。强化浸出1h提高38%,达90%。因此,PUL法的研究成功为我国黄金增产开创了新途径。  相似文献   

2.
夏青  王健 《金属矿山》2010,39(5):77-80
江西某含铜难浸金矿的金精矿常规金浸出率仅48.71%,采用富氧细菌氧化预处理后金浸出率可达91.67%。鉴于富氧、低温控制工艺的高要求不宜实际推广,研究中开展了低氧细菌预处理试验,并引入磁场强化预处理,达到金浸出率91.72%的较理想指标。同时,对磁场强化细菌预处理过程的机理进行了分析探讨。  相似文献   

3.
某含硫、砷难处理金矿的浮选金精矿,采用常规氰化及硫脲浸出,其金浸出率均较低,仅分别为31.52%和33.71%。为此,笔者进行了细菌氧化预处理研究,并考察了硫脲浸出的条件以及磁场对硫脲浸金的强化作用。结果表明,采用细菌预处理和磁场强化浸出联合工艺,金浸出率可达90.06%。  相似文献   

4.
本文比较了不同预处理条件下砷金矿中金的浸出行为,探讨了高砷金矿中砷的脱除效果和影响金的浸出率的原因。研究证实,氨性硫代硫酸钠溶液对高砷金矿中的金具有优异的浸出性能,该方法省去了各种复杂的预处理过程,金的浸出率从常规氰化法的15%提高到约90%。  相似文献   

5.
以废旧锂电池正极粉为原料,在磁场条件下,采用硫酸-双氧水体系浸出正极粉中的钴,探讨了磁感应强度、磁化浸出时间和浸出温度对钴浸出率的影响。结果表明,在磁感应强度为230 mT磁场、浸出时间为100 min、反应温度为70 ℃、固液比为1:100(其中硫酸浓度为3 mol/L)条件下,加入3 mL/g H2O2进行试验,钴的浸出率达到99.61%,相比较未磁化同等条件下,钴的浸出率提高了6.02个百分点。同时在硫酸用量减少20%的情况下,磁场强化浸出可以提高钴的浸出率4.62个百分点。磁场强化浸出的机理是加快了氢离子的扩散速度以及促进双氧水对Co3+的还原,从而提高了该浸出反应中钴的浸出率。   相似文献   

6.
氧化剂强化金浸出的机理研究   总被引:5,自引:0,他引:5  
童雄  钱鑫 《国外金属矿选矿》1997,34(10):37-41,55
本文研究了氧化剂强化浸金过程、提高金浸出率、降低氰化钠用量,缩短浸出时间的机理,即氧化剂具有提高矿浆温度,剥蚀金包裹体,代替或者部分代替常规的氧气,消除有害物质对浸金的不利影响等特点,分析了气体氧化剂的弊端和固液氧化剂的优势,同时指出了氧化剂在生产应用过程中应注意的问题.  相似文献   

7.
通过用H2O2对某金矿金精矿进行助金的氰化浸出试验研究,探讨了在实际浸出过程中矿浆pH值对H2O2稳定性的影响,H2O2用量对矿浆放氧速度,溶氧量和金的浸出率的影响,结果表明,过氧化氢助金浸出可大大缩短金的浸出时间,提高浸出率。  相似文献   

8.
某金矿金浸出率不高的原因及解决措施   总被引:1,自引:1,他引:0  
某金矿采用堆浸工艺,金的浸出率一直较低,改用全泥氰化浸出工艺进行试验,金的浸出率也没有明显的提高。为此,对该矿矿石进行了工艺矿物学研究,查明了影响金浸出的主要因素为雄黄、雌黄等。根据工艺矿物学研究结果,采用原矿先经浮选除去雄黄、雌黄等硫化物,浮选精矿预处理后氰化浸出,浮选尾矿直接氰化浸出的方案进行试验,金的总浸出率达到88.52%,较原矿直接全泥氰化浸出提高25.02个百分点。  相似文献   

9.
某含铜金精矿氰化浸出提金试验研究   总被引:1,自引:1,他引:1  
由于铜对金的氰化浸出过程有严重影响,含铜金精矿往往须送冶炼厂火法处理而不能就地产金,严重影响矿山效益。为此,对辽宁某含铜金精矿进行了旨在提高金浸出率的试验研究。结果表明,采用常规方法,金浸出率只有43.11%;将精矿脱药处理,浸出率可提高7.11个百分点;将脱药后的精矿用氨-氰混合液浸出,在氨和氰化钠的用量比为5.92:8的最佳比例下,金的浸出率可大幅度提高到90%以上;若采用炭浆法用氨一氰混合液进行浸出,浸出率可进一步提高到93%以上。  相似文献   

10.
国外强化金矿堆浸技术的最新进展   总被引:1,自引:0,他引:1  
本文对国外金矿堆浸所采取的强化浸出措施,包括制粒和喷淋方法的改造、细菌强化堆浸、氧气强化浸出、化学试剂强化浸出等,进行了系统的综述,以期对国内黄金堆浸技术和工艺的完善有所裨益。  相似文献   

11.
某含铜难浸金精矿常规硫脲浸出率仅48.71%,采用细菌预处理及磁场强化浸出后金浸出率可达92.86%。在常规硫脲浸出、低氧细菌预处理及氧化渣浸金试验中添加磁场可明显促进金的浸出,提高浸出率。  相似文献   

12.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

13.
董颖博  林海 《金属矿山》2008,38(9):100-103
研究了搅拌磨湿法超细磨得金精矿(-20μm>97%)的氰化浸出工艺,探讨了影响金精矿氰化浸出的因素,并与常规滚动式球磨机湿法磨得金精矿氰化浸出指标进行对比。结果表明,通过优化氰化浸出各种因素,可大大缩短氰化浸出时间,氰化钠和碱石灰用量分别降低了1 kg/t、1.47 kg/t,金的浸出率提高了0.49个百分点,浸渣含金量降低了0.21 g/t,效果显著。  相似文献   

14.
国外某含砷金精矿含金29.92g/t、砷10.27%,针对该高砷金精矿,在工艺矿物学研究的基础上,进行了碱预浸、常规浸出、助浸剂强化浸出试验。试验结果表明,常规浸出60h,金浸出率为86.83%,加浸出剂2强化浸出48h,金浸出率达到92.95%,助浸剂2强化浸出不仅能提高金浸出率,而且能加快金的浸出速度,强化效果明显。  相似文献   

15.
某氧化金矿石富氧浸出试验研究   总被引:1,自引:1,他引:0  
针对某氧化金矿石的特性及所处地理位置,若采用常规氰化浸出工艺,浸出16h后,金的浸出率才能达到 95%,氰化物消耗为2.03kg/t。为此,本文提出采用“富氧氰化浸出工艺”进行处理,试验表明,该工艺能显著提高浸吸速率,浸出8h后,金的浸出率96.68%,而氰化钠用量只需要常规浸出的一半。如果浸出过程中加入活性炭,金的吸附率为 99.14%。  相似文献   

16.
某浮选金精矿氰化浸出尾渣中Au品位1.58 g/t、Ag品位49.88 g/t,为了探索尾渣中目标矿物解离特征以及金、银未充分浸出的原因,对该浸渣开展了系统性工艺矿物学分析,结果表明,浸渣中裸露金含量占63.85%,这部分金在氰化浸出过程中属于可回收金;浸渣中有36.15%的金以包裹体形式存在,磨矿细度较粗是导致金金属流失的原因。在工艺矿物学研究基础上进行了浸出条件优化试验,确定适宜的金精矿浸出条件为:磨矿细度-0.037 mm粒级占95%、矿浆浓度50%、氰化钠浓度5 g/L、浸出时间36 h、溶氧度4.6 mg/L。在此条件下Au浸出率为99.30%,较现场生产提高1.73个百分点;银平均浸出率为64.41%,较现场生产提高24.41个百分点。  相似文献   

17.
罗增鑫 《现代矿业》2020,36(3):103-107
某大型低品位金铜矿山较高品位铜矿石选用浮选工艺进行富集,低品位铜矿石则利用生物堆浸工艺生产阴极铜,该矿山生物堆场随着堆高的增加,酸铁不断浸出、铜浸出率下降。针对该生物堆浸低品位铜矿石,采用预先分级、选冶联合工艺,并对原有堆浸工艺进行优化,2 mm筛上产品柱浸试验浸出率为75.22%,比原工艺流程浸出率提高了5.08个百分点,铁累积浸出率同比下降了2.75个百分点。-2 mm产品通过浮选工艺最终可获得含铜20.20%、回收率87.21%,伴生金品位3.6 g/t、金回收率58.74%,伴生银品位83.7 g/t、银回收率为68.28%的铜精矿,以及含硫47.12%,回收率33.00%的硫精矿。预先分级、选冶联合工艺铜综合回收率为79.55%,较原生物浸出工艺铜浸出率69.14%提高10.41个百分点,并伴生回收贵金属金、银及副产品硫精矿,使用该工艺可增加利润约1.16亿元。工艺改造后不仅可提高资源利用率,产生较大的经济效益,还可降低酸铁的浸出,大大降低环保处理成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号