首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Presents a new, physically-based model for the low-frequency noise in high-speed polysilicon emitter bipolar junction transistors (BJTs). Evidence of the low-frequency noise originating mainly from a superposition of generation-recombination (g-r) centers is presented. Measurements of the equivalent input noise spectral density (SIB) showed that for BJTs with large emitter areas (AE) S(IB) is proportional to 1/f, as expected. In contrast, the noise spectrum for BJTs with submicron AE showed a strong variation from a 1/f-dependence, due to the presence of several g-r centers. However, the average spectrum 〈S(IB)〉 has a frequency dependence proportional to 1/f for BJTs with large as well as small AE. The proposed model, based only on superposition of g-r centers, can predict the frequency-, current-, area-, and variation-dependency of 〈S(IB)〉 with excellent agreement to the measured results  相似文献   

2.
In-situ boron-doped polysilicon has been used to form the emitter in p-n-p transistors. Various polysilicon deposition conditions, interface preparation treatments prior to deposition, and post-deposition anneals were investigated. Unannealed devices lacking a deliberately grown interfacial oxide gave effective emitter Gummel numbers GE of 7-9×10-12s cm-4 combined with emitter resistances RE of approximately 8 μΩcm2. Introduction of a chemically grown interfacial oxide increased GE to 2×10 14s cm-4, but also raised RE by a factor of three. Annealing at 900°C following polysilicon deposition raised GE values for transistors lacking deliberate interfacial oxide to approximately 6×1013s cm-4, but had little effect of GE for devices with interfacial oxide. Both types of annealed devices gave RE values in the range 1-2 μΩcm2  相似文献   

3.
The frequency performance of AlGaAs/GaAs heterojunction bipolar transistors (HBTs) having different layouts, doping profiles, and layer thicknesses was assessed using the BIPOLE computer program. The optimized design of HBTs was studied, and the high current performances of HBTs and polysilicon emitter transistors were compared. It is shown that no current crowding effect occurs at current densities less than 1×105 A/cm2 for the HBT with emitter stripe width SE<3 μm, and the HBT current-handling capability determined by the peak current-gain cutoff frequency is more than twice as large as that of the polysilicon emitter transistor. An optimized maximum oscillation frequency formula has been obtained for a typical process n-p-n AlGaAs/GaAs HBT having base doping of 1×10 19 cm-3  相似文献   

4.
We demonstrate that fluorine incorporation in the polysilicon emitter of n-p-n double-diffused bipolar transistors during BF2 implantation at a dose of 1×1015 cm-2 significantly alters the device electrical characteristics. In particular, tunneling emitter/base currents are observed at both forward and reverse voltages, due to excessive base dopant concentration at the junction. Fluorine-enhanced interfacial oxide break-up and epitaxial realignment of the poly-Si emitter are shown to be responsible for these results  相似文献   

5.
We examine the geometrical scaling issues in SiGe HBT technology. Width Scaling, length scaling, and stripe-number scaling are quantified from a radio frequency (RF) design perspective at 2 GHz. We conclude that a SiGe HBT with emitter area AE=0.5×20×6 μm2 is optimum for low noise applications at Jc=0.1 mA/μm2 and f=2 GHz using the design methodology, which guarantees optimal noise and input impedance matching with the simplest matching network. Finally, the optimal device sizes at f=4 and 6 GHz for low noise applications are also obtained using the same method  相似文献   

6.
Bipolar transistors designed specifically for operation at liquid-nitrogen (LN2) temperature are discussed. It is found that for high-gain LN2 bipolar transistors, the emitter concentration should be around 5×1018 cm-3. Compensating impurities in the base should be kept to minimum. Test bipolar transistors with polysilicon emitter contacts were fabricated using these criteria. The devices show very little current degradation between room temperature and 77 k. Polysilicon emitter contacts are also shown to be somewhat more effective at lower temperatures  相似文献   

7.
The spectroscopic properties of Ho3+ laser channels in KGd(WO4)2 crystals have been investigated using optical absorption, photoluminescence, and lifetime measurements. The radiative lifetimes of Ho3+ have been calculated through a Judd-Ofelt (JO) formalism using 300-K optical absorption results. The JO parameters obtained were Ω2=15.35×10-20 cm2, Ω 4=3.79×10-20 cm2, Ω6 =1.69×10-20 cm2. The 7-300-K lifetimes obtained in diluted (8·1018 cm-3) KGW:0.1% Ho samples are: τ(5F3)≈0.9 μs, τ( 5S2)=19-3.6 μs, and τ(5F5 )≈1.1 μs. For Ho concentrations below 1.5×1020 cm-3, multiphonon emission is the main source of non radiative losses, and the temperature independent multiphonon probability in KGW is found to follow the energy gap law τph -1(0)=βexp(-αΔE), where β=1.4×10-7 s-1, and α=1.4×103 cm. Above this holmium concentration, energy transfer between Ho impurities also contributes to the losses. The spectral distributions of the Ho3+ emission cross section σEM for several laser channels are calculated in σ- and π-polarized configurations. The peak a σEM values achieved for transitions to the 5I8 level are ≈2×10-20 cm2 in the σ-polarized configuration, and three main lasing peaks at 2.02, 2.05, and 2.07 μm are envisaged inside the 5I75I8 channel  相似文献   

8.
The authors study the degradation of MOSFET current-voltage (V-I) characteristics as a function of polysilicon gate concentration (Np ), oxide thickness (tox) and substrate impurity concentration (ND) using measured and modeled results. Experimentally it is found that for MOSFETs with thin gate oxide (tox≈70 Å) and high substrate concentration (ND ≈1.6×1017 cm-3) the reduction in the drain current IDS can be as large as 10% to 20% for devices with insufficiently doped polysilicon gate (5×1018 ⩽Np⩽1.6×1019 cm-3). Theoretically it is shown that the drain current degradation becomes more pronounced as Np decreases, tox decreases, or ND, increases. A modified Pao-Sah model that takes into account the polysilicon depletion effect and an accurate gate-field-dependent mobility model are used to compute I-V characteristics for various values of Np, tox, and ND. Good agreement between experimental and modeled results is observed over a wide range of devices  相似文献   

9.
TEM analyses show metal migration into the polysilicon emitter of a bipolar transistor after high current stress. At the edges of the polysilicon emitter where the current density was expected to be the highest, a metal filament was seen penetrating into the edge of the polysilicon emitter after stressing at a current density of 16.3 mA/μm2 for 1.68×105 s at 90°C. The metal penetration into polysilicon offers a possible cause for an electrical measurement reported by D.D. Tang et al. (1990), in which a slight lowering of the emitter contact resistance occurs after the same stress  相似文献   

10.
A novel process which uses N2+ implantation into polysilicon gates to suppress the agglomeration of CoSi2 in polycide gated MOS devices is presented. The thermal stability of CoSi2/polysilicon stacked layers can be dramatically improved by using N2+ implantation into polysilicon. The sheet resistance of the samples without N2+ implantation starts to increase after 875°C RTA for 30 s, while the sheet resistance of CoSi2 film is not increased at all after 950 and 1000°C RTA for 30 s if the dose of nitrogen is increased up to 2×1015 cm-2 and 6×1015 cm2, respectively, and TEM photographs show that the agglomeration of CoSi2 film is completely suppressed. It is found that the transformation to CoSi2 from CoSi is impeded by N2+ implantation such that the grain size of CoSi2 with N2+ implantation is much smaller than that without N2+ implantation. As a result, the thermal stability of CoSi2 is significantly improved by N2+ implantation into polysilicon  相似文献   

11.
Using a two-dimensional (2-D) Green's function technique, similar to Shockley's impedance field technique, simulation results of the drain id and gate induced ig channel noise are presented for an nMOS transistor as a function of frequency. The simulation results show that for frequencies much lower than the cutoff frequency of the transistor ft the correlation factor (i.e., i¯ i¯*/√ig-2 ig-2) between the drain and gate channel noise is equal to approximately 0.4j. For frequencies near the ft of the device the correlation factor approximately equals 0.3j. For f/ft~0.3, the contribution of the gate induced noise compared to the drain noise was found to be on the order of 1% (i.e., i g-2/id-2(ft/f) 2)  相似文献   

12.
Steady-state and transient forward current-voltage I-V characteristics have been measured in 5.5 kV p+-n-n+ 4H-SiC rectifier diodes up to a current density j≈5.5×10 4 A/cm2. The steady-state data are compared with calculations in the framework of a model, in which the emitter injection coefficient decreases with increasing current density. To compare correctly the experimental and theoretical results, the lifetime of minority carriers for high injection level, τph, has been estimated from transient characteristics. At low injection level, the hole diffusion length Lpl has been measured by photoresponse technique. For a low-doped n-base, the hole diffusion lengths are Lpl≈2 μm and Lph≈6-10 μm at low and high injection levels respectively. Hole lifetimes for low and high injection levels are τpl≈15 ns and τph≈140-400 ns. The calculated and experimental results agree well within the wide range of current densities 10 A/cm 23 A/cm2. At j>5 kA/cm2, the experimental values of residual voltage drop V is lower than the calculated ones. In the range of current densities 5×103 A/cm24 A/cm2, the minimal value of differential resistance Rd =dV/dj is 1.5×10-4 Ω cm2. At j>25 kA/cm2, Rd increases with increasing current density manifesting the contribution of other nonlinear mechanisms to the formation steady-state current-voltage characteristic. The possible role of Auger recombination is also discussed  相似文献   

13.
The effect of nitrogen (N14)implant into dual-doped polysilicon gates was investigated. The electrical characteristics of sub-0.25-μm dual-gate transistors (both p- and n-channel), MOS capacitor quasi-static C-V curve, SIMS profile, poly-Si gate Rs , and oxide Qbd were compared at different nitrogen dose levels. A nitrogen dose of 5×1015 cm-2 is the optimum choice at an implant energy of 40 KeV in terms of the overall performance of both p- and n-MOSFETs and the oxide Qbd. The suppression of boron penetration is confirmed by the SIMS profiles to be attributed to the retardation effect in bulk polysilicon with the presence of nitrogen. High nitrogen dose (1×1016 cm-2) results in poly depletion and increase of sheet resistance in both unsilicided and silicided p+ poly, degrading the transistor performance. Under optimum design, nitrogen implantation into poly-Si gate is effective in suppressing boron penetration without degrading performance of either p- or n-channel transistors  相似文献   

14.
The emitter saturation current density, J0 was measured on diffused boron emitters in silicon for the case in which the emitter surface is passivated by a thermal oxide and for the case in which Al/Si is deposited on the emitter surface. The oxide-passivated emitters have a surface recombination velocity, s, which is near its lowest technologically achievable value. In contrast, the emitters with Al/Si on the surface have surface recombination velocities which approach the maximum possible value of s. From the J 0 measurements, the apparent bandgap narrowing as a function of boron doping was found. Using this bandgap narrowing data, the surface recombination velocity at the Si/SiO2 interface was extracted for surface boron concentrations from 3×1017 to 3×1019 cm-3  相似文献   

15.
1/f noise magnitude in a 15 μm×0.5 μm PMOSFET was remarkably reduced by simply adding a cleaning step using an ammonia hydrogen peroxide mixture (APM) prior to gate oxidation. Gate input-referred noise level for APM-finished PMOSFETs at f=10 Hz was around -128 dBV2/Hz whereas for standard, HF-finished devices, the level was around -114 dBV2/Hz. Flat-band voltages (VFBs) determined by a capacitance-voltage (C-V) measurement were -0.19 V for an APM-finished PMOS and -0.34 V for a HF-finished PMOS. Based on the VFB values, interface state densities were determined to be Nit=3.02×1011 cm-2 for APM-finished PMOS and Nit=6.47×1011 cm-2 for HF-finished PMOS. Lower interface state density obtained by the APM preoxidation cleaning is consistent with the remarkable reduction in the 1/f noise magnitude  相似文献   

16.
The total emitter to collector delay for a Pnp AlGaAs/GaAs HBT has been reduced to 4.8 ps by employing a thin base (325 Å) and collector (2300 Å). Simultaneously, a low base sheet resistance of 170 ohms/square was achieved with tellurium doping. A higher collector doping than is typically used permitted operation at collector current densities in excess of 5×104 A/cm2. A single emitter (2×4 μm2) and a single base contact device topology has an ft and fmax of 33 and 66 GHz, respectively  相似文献   

17.
We measured the current-voltage characteristics of YBa2Cu3O7-x/oxide/n-SrTiO3 diodes using NdGaO3, LaAlO3, CeO2, and MgO as the oxide. MgO films had the highest current density. We then fabricated dielectric-base transistors with a YBa2Cu3 O7-x(YBCO) emitter/collector on a SrTiO3 dielectric base with an MgO barrier. The transistors had both voltage and current gains exceeding unity at 4.2 K. The emitter current density was about 4×103 A/cm2 at a collector-emitter voltage of 10 V and base-emitter voltage 10 V; this is 2 to 3 orders of magnitude larger than that of transistors with NdGaO3 emitter-base barrier. We obtained a transconductance of around 0.4 mS at a collector-emitter voltage of 10 V for a device with a 6-μm-diameter emitter  相似文献   

18.
A theoretical investigation of Si/Si1-xGex heterojunction bipolar transistors (HBTs) undertaken in an attempt to determine their speed potential is discussed. The analysis is based on a compact transistor model, and devices with self-aligned geometry, including both extrinsic and intrinsic parameters, are considered. For an emitter area of 1×5 μm2, an ft of over 75 GHz and fmax of over 35 GHz were computed at a collector current density of 1×10 5 A/cm2 and VCB of 5 V  相似文献   

19.
This paper describes a novel fully planar AlGaAs/GaAs heterojunction bipolar transistor (HBT) technology using selective chemical beam epitaxy (CBE). Planarization is achieved by a selective regrowth of the base and collector contact layers. This process allows the simultaneous metallization of the emitter, base and collector on top of the device. For the devices with an emitter-base junction area of 2×6 μm2 and a base-collector junction area of 14×6 μm2, a current gain cut off frequency of 50 GHz and a maximum oscillation frequency of 30 GHz are achieved. The common emitter current gain hFE is 25 for a collector current density Jc of 2×104 A/cm2  相似文献   

20.
A corner tunneling current component in the reverse-biased emitter-base junction of advanced CMOS compatible polysilicon self-aligned bipolar transistors has been identified by measuring base current as a function of temperature, bias voltage, and emitter shape. This current is found to be an excess tunneling current caused by an increase in defect density in the corners of the emitter and gives rise to three-dimensional effects in small-geometry devices. The devices used for this study were selected from batches aimed at optimizing the emitter-base system. For this reason, the starting material was n-type (~1016 cm-3) and provided the collector regions of the transistors. The intrinsic base and lightly doped extrinsic base regions were both implanted at 30 keV to a dose of 1×1013 cm-2. The activation anneal was performed at 1060°C for 20 s in a rapid thermal annealer. Under such conditions, the emitter-base junction is located about 600 Å below the polysilicon-substrate interface  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号