首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel neuropsychotropic agent milacemide hydrochloride (2-n-pentylaminoacetamide HCl) is a highly selective substrate of the B form of monoamine oxidase (EC 1.4.3.4; MAO). Under the in vitro conditions used in the present study, milacemide acts as an enzyme-activated, partially reversible inhibitor of MAO-B. A reversible inhibition of MAO-A activity is also observed at high concentrations. The inhibitory activity of milacemide is significantly greater for MAO-B. In vivo, after single or repeated oral administration, a specific inhibition of MAO-B is apparent in brain and liver, with a lack of inhibition of the MAO-A activity. In contrast to the irreversible inhibitory action of L-deprenyl, the recovery of MAO-B activity in vivo after milacemide administration is significantly faster, a result suggesting that it is a partially reversible inhibitor. The selective inhibitory effect of milacemide for MAO-B in vivo is confirmed by its potentiation of phenylethylamine-induced stereotyped behavior, whereas vasopressor responses to tyramine were not affected. These observations suggest that milacemide could enhance dopaminergic activity in the brain and could be used as therapy for Parkinson's disease in association with L-3,4-dihydroxyphenylalanine.  相似文献   

2.
Human brain and liver mitochondria contain membrane-bound monoamine oxidase of both A and B types. Monamine oxidase-A (MAO-A), either membrane-bound or in detergent-solubilized extracts from these tissues, was selectively inhibited during incubations with trypsin, chymotrypsin, thermolysin, or papain. MAO-A in solubilized, but not in membrane-bound, preparations was also very sensitive to the action of phospholipase A2, while MAO-B was unaffected. Membrane-bound MAO-A of rat brain mitochondria was more sensitive to phospholipases and less sensitive to proteases than was human brain enzyme, indicating that these agents may reveal species differences in MAO properties. Human brain and liver MAO-A, either solubilized or bound in mitochondrial membranes, apparently contains basic and aromatic peptide moieties that are available to proteases. Hydrolysis of these peptide bonds leads to rapid denaturation unless substrate molecules stabilize the active site. Phospholipase A2 may disrupt the phospholipid microenvironment of MAO-A, the integrity of which is essential for MAO-A activity, but not for MAO-B. No interconversion of the two activities was observed. After phospholipase A2 treatment, remaining MAO-A activity was recovered in low-molecular-weight regions of a gel filtration gradient, suggesting that MAO-A subunits were released. Although these experiments argue against the proposal that phospholipids may regulate the ratio of A/B activities of a single enzyme molecule, it is conceivable that endogenous phospholipases or proteases in mitochondrial membranes may influence MAO-A activity independently of MAO-B activity.  相似文献   

3.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

4.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is a chemical that, after injection into experimental animals, including mice and monkeys, causes a degeneration of the nigrostriatal pathway. We carried out experiments designed to study the in vitro oxidation of MPTP by mouse brain mitochondrial preparations. MPTP was actively oxidized by the mitochondrial preparations, with Km and Vmax values very similar to those of benzylamine, a typical substrate for MAO-B. MPTP was oxidized considerably better than many of its analogs, even those with relatively minor structural changes. Several monoamine oxidase inhibitors (MAOI) were potent inhibitors of MPTP oxidation, and there was a highly significant correlation between the capacity of the MAOI tested to inhibit MPTP oxidation and benzylamine oxidation. There was no correlation between the capacity of the MAOI to inhibit MPTP oxidation and their capacity to inhibit the oxidation of tryptamine, a substrate for MAO-A. In other experiments, MPTP was an excellent substrate for pure MAO-B, prepared from bovine liver. All of these data, combined with the fact that MAO-B inhibitors can protect against MPTP-induced dopaminergic neurotoxicity in vivo, point to an important role for MAO-B in MPTP metabolism in vivo.  相似文献   

5.
The rate of benzylamine utilization by monoamine oxidase (MAO)-B from human blood platelets was 2-4 times higher than that for octopamine. Both activities were inhibited 100% by 10(-7) M deprenyl (a specific MAO-B inhibitor) and were not affected by clorgyline (a specific MAO-A inhibitor) or by polyclonal antibodies to MAO-A. The preincubation of platelet MAO-B with purified MAO-A from mitochondrial membranes of human placenta resulted in appearance of excess octopamine activity. This additional activity was not precipitated by antibodies to MAO-A or inhibited by deprenyl but was inhibited by clorgyline. Incubation of the MAO-A preparation from placenta at 45 degrees C for 15 min before its preincubation with MAO-B caused 50% loss of both activities. Protease inhibitors had no effect on the modification of MAO. These data indicate that MAO-A or a factor tightly bound to it can modify MAO-B yielding a form of the enzyme with both MAO-A and MAO-B substrate and inhibitor affinities and MAO-B immunospecificity.  相似文献   

6.
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs.  相似文献   

7.
The effects of metal chelators on monoamine oxidase (MAO) isozymes, MAO-A and MAO-B, in monkey brain mitochondria were investigated in vitro. MAO-A activity increased to about 40% with 0.1 μM calcium disodium edetate (CaNa2EDTA) using serotonin as a substrate, and this activation was proportional to the concentration of CaNa2EDTA. On the other hand, MAO-A activities were decreased gradually with an increasing concentration of o-phenanthroline and diethyldithiocarbamic acid, but these metal chelators had no effect on MAO-B activity in monkey brain. The activation of MAO-A activity by CaNa2EDTA was reversible. CaNa2EDTA did not activate both MAO-A and MAO-B activities in rat brain mitochondria. Zn and Fe ions were found in the mitochondria of monkey brain. Zn ions potently inhibited MAO-A activity, but Fe ions did not inhibit either MAO-A or MAO-B activity in monkey brain mitochondria. These results indicate that the activating action of CaNa2EDTA on MAO-A was the result of the chelating of Zn ions contained in mitochondria by CaNa2EDTA. These results also indicate the possibility that Zn ions may regulate physiologically the level of serotonin and norepinephrine content in brain by inhibiting a MAO-A activity.  相似文献   

8.
The previous report that PC12 (pheochromocytoma) cells have a K(+)-induced, as well as a tyramine-induced, catecholamine release mechanism has been confirmed. Selective monoamine oxidase (MAO)-A (clorgyline and moclobemide) and not MAO-B inhibitors (l-deprenyl, AGN 1135, and Ro 16-6491) potentiate the catecholamine-releasing action of tyramine significantly more than that of K+. The potentiation of tyramine-induced [3H]noradrenaline release from PC12 cells by MAO-A inhibitors has been linked to the presence of MAO-A in these cells, for which tyramine and noradrenaline are substrates. In the above respects, it is the PC12 cell that resembles more closely the peripheral adrenergic neuron, rather than the chromaffin cell, which is endowed with MAO-B and lacks the tyramine-releasable pool of catecholamines.  相似文献   

9.
Abstract: We studied the monoamine metabolizing mitochondrial enzyme, monoamine oxidase (MAO), in cerebral microvessels obtained from postnatally developing rats by measuring the specific binding of [3H]pargyline, an irreversible inhibitor of MAO, and the rate of oxidation of three known MAO substrates: benzylamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and tryptamine. MAO activity increased postnatally, with the greatest increase occurring in the second week and reaching a peak at 3 weeks of age. A concomitant increase in MAO of the cerebral cortex also occurred, but was several-fold less than that of cerebral microvessels. Using clorgyline and deprenyl, relatively specific inhibitors of MAO-A and MAO-B, we showed that cerebral microvessels contain both forms of MAO at all ages, but there was a major preponderance in the postnatal development of MAO-B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat microvessels after [3H]pargyline binding also showed two distinct bands of radioactivity at all ages. These two bands corresponded to molecular weights of ∼6.5,000 for MAO-A and -60,000 for MAO-B. SDS-PAGE resuits of brain microvessels obtained from 1-, 14-, and 42-day-old rats confirm the differential postnatal development of MAO-B in rat brain microvessels.  相似文献   

10.
We have previously reported that carp (Cyprinus carpio) tissue mitochondria contain a novel form of monoamine oxidase (MAO), which belongs neither to MAO-A nor to MAO-B of the mammalian enzyme. This conclusion results from the findings that the carp MAO was equally sensitive to a selective MAO-A inhibitor clorgyline and to the MAO-B selective inhibitor l-deprenyl, when tyramine, a substrate for both forms, serotonin or beta-phenylethylamine, a substrate for either A or B-form of mammalian MAO, was used. In the present study, we tried to detect another amine oxidase, termed tissue-bound semicarbazide-sensitive amine oxidase (SSAO), activity in carp tissues. As definition of SSAO was used, such as insensitivity to inhibition of the kynuramine oxidizing activity by an MAO inhibitor pargyline and high sensitivity to the SSAO inhibitor semicarbazide. The results indicated that the oxidizing activity was selectively and almost completely inhibited by 0.1 mM pargyline alone or a combination of 0.1 mM pargyline plus 0.1 mM semicarbazide, but not by 0.1 mM semicarbazide alone. We also tried to detect any SSAO activity by changing experimental conditions, such as lower incubation temperature, higher enzyme protein concentration, a lower substrate concentration and different pH's in the reaction, as the enzyme source. However, still no SSAO activity could be detected in the tissues. These results conclusively indicate that carp tissues so far examined do not contain SSAO activity.  相似文献   

11.
In rodents, SR 95191 [3-(2-morpholinoethylamino)-4-cyano-6-phenylpyridazine] has been shown to be active in animal models of depression. The profile of activity of SR 95191 suggests that the compound is a selective and short-acting type A monoamine oxidase (MAO) inhibitor (MAOI) in vivo. In the present study, the interaction of SR 95191 with MAO-A and MAO-B activity was further examined in vivo and in vitro. In brain, liver, and duodenum of pretreated rats, SR 95191 selectively inhibited MAO-A (ED50 = 3-5 mg/kg, p.o.), whereas MAO-B was only weakly inhibited for doses as high as 300 mg/kg, p.o. In vivo, SR 95191 (1-100 mg/kg, p.o.) antagonized, in a dose-dependent fashion, the irreversible inhibition of brain and liver MAO-A induced by phenelzine. Finally, dopamine and 5-hydroxytryptamine depleted from their striatal stores by tetrabenazine were able to displace SR 95191 from the active site of MAO-A. However, ex vivo, kinetic studies showed that the inhibitory effect of SR 95191 (1-10 mg/kg) towards MAO-A was noncompetitive and was unchanged after dilution or dialysis. In vitro, the inhibition of brain MAO-A, but not MAO-B, by SR 95191 was time dependent, with a 19-fold decrease in the IC50 values being observed over a 30-min incubation period (140 to 7.5 microM). At this time, the SR 95191-induced inhibition of MAO-A was not removed by repeated washings. When the reaction was started by adding the homogenate without prior preincubation with SR 95191, the inhibition of brain MAO-A was fully competitive (Ki = 68 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
4-(O-Benzylphenoxy)-N-methylbutylamine (Bifemelane, BP-N-methylbutylamine), a new psychotropic drug, was found to inhibit monoamine oxidase (MAO) in human brain synaptosomes. It inhibited type A MAO (MAO-A) competitively and type B (MAO-B) noncompetitively. BP-N-methylbutylamine had a much higher affinity to MAO-A than an amine substrate, kynuramine, and it was a more potent inhibitor of MAO-A than of MAO-B. The Ki values of MAO-A and -B were determined to be 4.20 and 46.0 microM, respectively, while the Km values of MAO-A and -B with kynuramine were 44.1 and 90.0 microM, respectively. The inhibition of MAO-A and -B by BP-N-methylbutylamine was found to be reversible by dialysis of the incubation mixture. MAO-A in human placental and liver mitochondria and in a rat clonal pheochromocytoma cell line, PC12h, was inhibited competitively by BP-N-methylbutylamine, while MAO-B in human liver mitochondria was inhibited noncompetitively, as in human brain synaptosomes. BP-N-methylbutylamine was not oxidized by MAO-A and -B. The effects of other BP-N-methylalkylamines, such as BP-N-methylethylamine, -propylamine, and -pentanylamine, on MAO activity were examined. BP-N-methylbutylamine was the most potent inhibitor of MAO-A, and BP-N-methylethylamine and -propylamine inhibited MAO-B competitively, whereas BP-N-methylbutylamine and -pentanylamine inhibited it noncompetitively. Inhibition of these BP-N-methylalkylamines on MAO-A and -B is discussed in relation to their chemical structure.  相似文献   

13.
The characteristics of mitochondrial monoamine oxidase (MAO) in carp liver were studied with MAO inhibitors and substrates. This enzyme was thermolabile, but was stabilized in the presence of bovine serum albumin. With clorgyline and deprenyl, single-sigmoidal curves for inhibition of the activity towards tyramine or 5-hydroxytryptamine were obtained; the sensitivities to the two inhibitors were identical. The activity towards β-phenylethylamine was not completely inhibited by clorgyline or deprenyl, but the remaining activity was inhibited by semicarbazide and the inhibition curves by either clorgyline or deprenyl and semicarbazide were also identical to the curves with the other two substrates. These results suggest that carp liver mitochondria contain “classical” MAO and a clorgyline- and deprenyl-resistant amine oxidase and that the classical MAO does not seem to be MAO-A or MAO-B, which are present in mitochondria of most mammalian tissues.  相似文献   

14.
J H Hurst  E C Kulakowski 《Life sciences》1986,39(16):1471-1477
CGP 6085 A [4-(5,6-dimethyl-2-benzofuranyl)piperidine] HCl, a known serotonin inhibitor, also inhibits rat brainstem monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) in both in vivo and in vitro experiments. Serotonin (5-HT) deamination by MAO-A is inhibited 35% at a dose of 100 mg/kg i.p. in vivo. Similar experiments show a maximal 20% decrease in phenylethylamine (PEA) deamination by MAO-B at a dosage of 30 mg/kg i.p. Over the range of 0.1 to 10 mg/kg i.p., CGP 6085 A decreases 5-HIAA levels in the brainstem. This in vivo inhibition of MAO activity is confirmed by in vitro experiments. In vitro studies in rat brainstem mitochondrial preparations show a dose-dependent, reversible, inhibition of MAO using tyramine as the substrate for the enzyme reaction. With an in vitro IC50 of 2-3 microM, the potency of CGP 6085 A is comparable to pargyline.  相似文献   

15.
Pretreatment of rats with clorgyline, a selective inhibitor of MAO-A, significantly inhibited the in vivo deamination of intraventricularly administered serotonin (5-HT) and 5-methoxytryptamine (5-MT), but not phenylethylamine (PEA). Pretreatment with d, l-deprenyl, a selective inhibitor of MAO-B, significantly inhibited the in vivo deamination of all three substrates. Brain and liver homogenates from rats pretreated with clorgyline showed a decreased ability to deaminate (in vitro) 5-MT and 5-HT, but not PEA. Homogenates from animals pretreated with d,l-deprenyl showed a decreased capacity to deaminate PEA, but not 5-MT or 5-HT. Clorgyline, when added to brain and liver homogenates, selectively blocked the deamination of 5-MT and 5-HT, but not PEA, whereas, d,l-deprenyl blocked the deamination of PEA without affecting that of 5-MT or 5-HT. In addition, 5-MT was found to be 100 X more potent than PEA at inhibiting the in vitro deamination of 5-HT. These findings suggest that 5-MT and 5-HT are favored substrates for MAO-A in vitro and in vivo. However, in vivo, significant amounts of 5-MT and 5-HT can also be deaminated by MAO-B.  相似文献   

16.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Monoamine oxidase (MAO) type A and type B were measured using kynuramine, 3,4-dihydroxyphenylethylamine (dopamine, DA), and 5-hydroxytryptamine (5-HT, serotonin) in 20 brain areas. The highest activities were found in the striatum (caudate nucleus, putamen, globus pallidus, and substantia nigra), hypothalamus, and c-mammilare. The ratio of DA to 5-HT deamination varied in the different regions, being in favor of DA in the striatum. With kynuramine as the substrate IC50 values of a number of inhibitors indicated that l-deprenyl was far more potent an inhibitor of human brain MAO than clorgyline or harmaline. N-Desmethylpropargylindane hydrochloride (AGN 1135) was also shown to have MAO-B inhibitory selectivity similar to that of l-deprenyl. Brains obtained at autopsy from l-deprenyl-treated Parkinsonian patients showed that, whereas MAO-B was fully inhibited by the therapeutic doses of l-deprenyl, substantial MAO-A activity was still evident. These results are matched by the significant increases of DA noted in caudate nucleus, globus pallidus, putamen, and substantia nigra and the unaltered 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the same regions. These data indicate that the therapeutic actions of l-deprenyl may lie in its selective inhibition of MAO-B resulting in increased brain levels of DA formed from L-dihydroxyphenylacetic acid (L-DOPA).  相似文献   

18.
N-[methyl-14C]N,N-dimethylphenylethylamine (DMPEA) was synthesized and its availability as a selective radiotracer for in vivo measurement of mouse brain monoamine oxidase (MAO) activity was examined. Relatively high incorporation of labelled DMPEA into brain (about 10% of the injected dose/per gram of brain) was observed just after its injection; however, radioactive dimethylamine, a metabolite produced from labelled DMPEA in the brain 1 h after DMPEA injection, was reduced in a dose-dependent manner by pretreatment with various doses of a specific MAO-B inhibitor, 1-deprenyl, but was not reduced appreciably by pretreatment with a specific MAO-A inhibitor, clorgyline. Pretreatment with 1-deprenyl did not affect significantly the rate of incorporation of the radiotracer DMPEA into the brain, suggesting that reduction of the radioactivity in brain by this compound might be due to a decrease in the rate of production of the radioactive metabolite dimethylamine by brain MAO-B. The amount of the radioactive metabolite trapped in the brain was found to be proportional to the brain MAO-B activity remaining after pretreatment with 1-deprenyl. In vitro deamination of DMPEA by mouse brain MAO showed a higher sensitivity to inhibition by 1-deprenyl than that by clorgyline. These results indicate that DMPEA is a selective substrate for mouse brain MAO-B both in vivo and in vitro and that the positron emitter [11C]DMPEA might be used instead of [14C]DMPEA as a radiotracer for in vivo measurement of MAO-B activity in human brain.  相似文献   

19.
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.  相似文献   

20.
Inhibition of Monoamine Oxidase by N-Methylisoquinolinium Ion   总被引:3,自引:3,他引:0  
N-Methylisoquinolinium ion (N-MIQ) has been found to inhibit the biosynthesis of catecholamines; it inhibited tyrosine hydroxylase activity in striatal tissue slices. In this article, the effects of N-MIQ and an analogue, N-methylquinolinium ion, on monoamine oxidase (MAO) activity were examined to see their effects on the catabolism of catecholamines. MAO-A in human placental mitochondria was strongly inhibited by N-MIQ in competition with the substrate. The apparent Ki value of N-MIQ was found to be 20.4 +/- 1.1 microM, whereas that of N-methylquinolinium ion was 54.6 +/- 4.5 microM. MAO-B in human brain synaptosomes and liver mitochondria was found to be inhibited by N-MIQ, but the inhibition proved to be noncompetitive. The inhibition of MAO-B by N-MIQ was completely reversible by dialysis of the incubation mixture. MAO-A in human brain and liver mitochondria was more sensitive to the inhibitor than MAO-B. By quantitative analysis of N-MIQ, using HPLC, it was found not to be catabolized by the incubation with mitochondria, suggesting that the inhibition was due to N-MIQ itself and not due to any metabolic product. The inhibition of MAO by N-MIQ is discussed in terms of its possible involvement of the etiology of parkinsonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号