首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Corrosion behaviour of low alloy steels (A and B) with different carbon content was studied by a salt fog test and an outdoor test. A commercial weathering steel 09CuPCrNi was used for comparison. The corrosion resistance of steels A and B with homogeneous microstructures was better than that of the commercial weathering steel 09CuPCrNi in the salt fog test. Steel A with an ultra-low-carbon content had far less weathering resistance than the other steels in the outdoor test. Selective corrosion of large pearlite produces stress in initial corrosion product films. Uniform corrosion product films with few cracks tend to form on homogeneous microstructures such as ferrite and bainite, and this is advantageous for the formation of a compact rust layer in the initial stage of atmospheric corrosion. However, uniform microstructures will result in over even interfaces between rust layers and bases, which will lead to frequent peeling of rust layers from bases because stress is induced by large temperature fluctuations and wet-dry alternations. Protection of the rust layer on a low alloy steel is dependent on the rust density and the bonding performance of the rust-base rather than the proportion of the rust phase in the initial stage of atmospheric corrosion. These results indicate that homogenous microstructures, proper amounts of carbon content and fine carbon-rich phases that are produced by appropriate processes are beneficial for the corrosion resistance of steels.  相似文献   

2.
The susceptibility to environmental embrittlement (EE) of automobile spring steels was investigated using six different steels. Slow strain rate tensile test and thermal desorption spectroscopic analysis were applied to specimens subjected to wet-dry cyclic corrosion tests in a NaCl solution. Experimental results revealed that the reduction in ductility after the corrosion tests was pronounced with increasing strength level. This degradation was closely associated with the resistance to pitting corrosion. Consequently, the hydrogen absorbed in steel and the corrosion pit as a geometric damage were responsible for the EE of spring steels. The hydrogen in rust layer had no significant influence on the EE.  相似文献   

3.
Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer of solution film formed during atmospheric corrosion. This study shows that measurable hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results suggest the intrinsic importance of H+ reduction that merits further investigation.  相似文献   

4.
The initial corrosion behavior of carbon steel subjected to outdoor wet-dry cyclic exposure and exposure under natural environments have been investigated. The weight loss results indicate a transition from corrosion acceleration to deceleration during the early stage of corrosion of carbon steel under both conditions. The corrosion kinetics under both conditions follow empirical equation D = Atn. Outdoor wet-dry cyclic exposure significantly promoted the initiation but the rate of corrosion was about three times as fast. The morphology of corrosion surfaces and cross-section of rust layer have been examined using SEM and the compositions have been analyzed using XRD and EPMA.  相似文献   

5.
The rust layers on the weathering steels exposed for 17 or 18 y at seven different sites in Japan were studied by electrochemical impedance under wet condition and measurement of amount of water vapor adsorbed. The transient of amount of adsorbed water vapor into the rust layer during humidity jump from 0% to 80% RH indicated that saturation of adsorbed water vapor took place within 1 h. From the semi-infinite model of diffusion, apparent diffusion coefficients of H2O in the rust were calculated. It was found the apparent diffusion coefficient was higher when the amount of air-borne salt of exposure sites was higher. The impedance diagram of the rusted steels was analyzed with an equivalent circuit consisting of a series connection between an ohmic resistance and a parallel circuit of charge transfer resistance-redox capacitance. The double layer capacitance on the gold electrodes pressed onto the rust layer was further added on the circuit. The impedance showed that the rust layer behaved as a dielectric layer under dry condition, while the conductance was greatly enhanced with wet condition. The charge transfer resistance evaluated from the simulation under wet condition was largely dependent on the amount of air-borne salt in environment. It was concluded that the rust layer formed in the site with relatively large amount of air-borne salt revealed high conductivity under wet condition. For the rust formation followed by the Evans model during wet-dry cycles, the higher conductivity induced the more facilitative reduction of the rust layer under wet condition and the larger growth of the rust layer in a wet-dry cycle.  相似文献   

6.
耐候钢及其腐蚀产物的研究概况   总被引:7,自引:0,他引:7  
介绍了耐候钢的发展、国内外使用及研究状况,概述了合金元素对耐候钢耐大气腐蚀性能的影响及其作用机制的研究进展,并对腐蚀产物的组成、锈层形成及其演变的电化学过程方面的研究进行了介绍,对今后耐候钢的研究与发展前景提出了展望。  相似文献   

7.
A binary-phase potential-pH diagram has been investigated to evaluate the chemical stability of various kinds of double oxide rusts (Fe-X) to get a principle for alloy design enhancing the corrosion resistance of steels. It was found that there are the following types of alloying elements enhancing the corrosion resistance of steels in the rust: (1) iron substitution type (Ni), (2) oxide formation type (Al), (3) metallic type (Ru), and (4) oxygen-acid salt type (WO4). X-ray photoelectron spectroscopy and transmission electron microscopy analyses have been conducted on the rust formed on the low alloy steel in a saline environment. The analytical results were discussed using potential-pH diagrams. The iron substitution type and the oxide formation type elements make spinel double oxides with iron. In the corrosion tests, steels added with Ni or Al had high corrosion resistance. Thus it is possible to obtain high corrosion resistance by the creation of spinel double oxide such as Fe2NiO4 and FeAl2O4 in an inner layer.On the other hand it was found that the metallic type and the oxygen-acid salt type elements were not contained into the iron rust. In particular the oxygen-acid salt elements were excluded from the iron rust and concentrated into the defects of the rust. It is suggested that insoluble salts like FeWO4 are formed on the base metal in the defects to act as an anodic inhibitor. Thus, the addition of a small quantity of W gives high corrosion resistance.The penetration of Cl ions can be prevented by the spinel double oxide in an inner layer and the oxygen-acid salt in the defects. In this way, the high corrosion resistance by the addition of these elements can be understood from the potential-pH diagram and the physical analyses.  相似文献   

8.
The corrosion behavior of mild steel has been investigated during the wet and dry cyclic transitions containing Cr3+ ion added as sulfate in order to gain a better understanding of the influence of Cr on the atmospheric corrosion of steels. The corrosion rate during drying is greatly suppressed by the existence of Cr3+ ion in the electrolyte covered with the surface. Lower corrosion rates are observed during drying even if the surface have been polarized to negative potentials below −200 mVSHE during the wet corrosion conditions in which the surface-covered electrolyte contains Cr3+ ion. This corrosion behavior is identical to the case of Cr-containing steel for the wet and dry cyclic transitions without the addition of Cr3+ ion. The composition of rust layer after the wet and dry cyclic transitions is composed of α-FeOOH, γ-FeOOH and Fe3−δO4 for both cases of non-Cr3+ and Cr3+-containing condition, and no significant difference in the mass fraction of the above rust substances between two conditions is observed by means of Mössbauer spectroscopy. The only difference in the rust layer is that the rust formed under the wet and dry cyclic transitions containing Cr3+ ion contains a certain amount of Cr near the steel/rust interface. Those results suggest that the role of Cr during the wet and dry cyclic transitions is the inhibition of the rust reduction and the formation of Fe2+-state intermediate by the existence of Cr in the rust layer. This can lead to the inhibition of the oxygen reduction during drying.  相似文献   

9.
In this study, the effect of Fe-Zn alloy layer that is formed during galvanizing process on the corrosion behavior of galvanized steel has been investigated. The galvanostatic dissolution of galvanized steel was carried out in 0.5 M NaCl solution to obtain the Fe-Zn alloy layer on the base steel. The alloy layer was characterized to be composed of FeZn13, FeZn7 and Fe3Zn10 intermetallic phases, which constitute the zeta, delta1 and gamma layers of galvanized steel, respectively. It was observed that the alloy layer has similar cathodic polarization behavior but different anodic polarization behavior compared to galvanized steel. The anodic current plateau of alloy layer was up to 100 times lower than that of galvanized coating. Corrosion test performed in wet-dry cyclic condition has shown that the alloy layer has lower corrosion rate as compared to galvanized steel. From the results of corrosion test of alloy layer and base steel, it was concluded that Zn2+ has positive effect on the protectiveness of the zinc corrosion products. The measurement of surface potential over the alloy/steel galvanic couple has confirmed the galvanic ability of alloy layer to protect both the alloy layer itself and the base iron during initial stage of atmospheric corrosion.  相似文献   

10.
T. Nishimura   《Corrosion Science》2008,50(5):1306-1312
A high Si, Al type ultrafine-grained (UFG) weathering steel was produced by the multi-pass warm rolling method, and its corrosion resistance was estimated by a cyclic wet/dry corrosion test using chloride ions. The Si- and Al-bearing UFG steel exhibited excellent corrosion resistance in comparison with Si–Mn carbon steel (SM).

EPMA and TEM analyses showed that Si and Al mainly exist in nano-scale iron complex oxides in the inner rust layer formed on the developed steel. The Al K X-ray spectrum of Al2O3 and metallic Al had different peak positions due to chemical shifts, and that of the test sample was the same as that of Al2O3 in the EPMA analysis. This result suggested that Al was present in the complex oxides as Al3+. In the same way, Si was identified as an intermediate state such as Si2+ in the complex oxides of the inner rust.

EIS (electrochemical impedance spectroscopy) measurement of the corrosion test samples revealed that the rust resistance (Rrust) and corrosion reaction resistance (Rt) of the developed steel were much larger than those of SM. It was found that nano-scale complex iron oxides formed in the lower layer of iron rust in the developed steel, resulting in increased Rrust and Rt, and finally suppressing corrosion.  相似文献   


11.
The corrosion behaviour of a quaternary bronze UNS C83600 exposed to stagnant acid rain was examined through wet-dry tests. During the tests, parallel monitoring was performed to determine the evolution of both the bronze surface and the weathering solution composition. The results show that the kinetics of bronze oxidation is governed by diffusion through a two-layer patina: an inner Sn-rich layer and an external Cu and Pb-rich layer. The corrosion rate of the alloy decreases with time, but the dissolution of individual metals (Cu, Zn and Pb) in the environment increases with different trends, showing progressive patina destabilisation.  相似文献   

12.
A.Q. Fu 《Corrosion Science》2009,51(4):914-920
Corrosion of X65 pipeline steel under a disbonded coating was studied by scanning Kelvin probe measurements. Three types of specimen were designed and prepared to investigate the effects of immersion time, oxygen concentration and wet-dry cycle on Kelvin potential profile and thus corrosion behavior of the steel. Kelvin potential measured on “intact” area is shifted negatively with time, indicating an increasing water uptake under the “intact” coating. With the increase of the amount of solution, it is expected that the electrolyte concentration and electrochemical reaction rate change, resulting in a significant decrease of interfacial potential. Moreover, there is a more negative Kelvin potential on disbonded area than that on “intact” area. The negative shift of Kelvin potential is attributed to corrosion reaction of steel occurring under the disbonded coating. Due to the narrow geometry of coating disbondment, an oxygen concentration difference exists along the depth of the disbondment. The corrosion behavior under disbonded coating strongly depends on the oxygen partial pressure and local geometry. With continuous purging of nitrogen and removing of oxygen, Kelvin potential tends to be identical throughout the disbonded area. During wet-dry cycle, the thickness of solution layer trapped under disbonded coating decreases due to evaporation of water. With the decrease of solution layer thickness, the measured Kelvin potential decreases, indicating that the effect associated with the reduction of oxygen solubility in the concentrated solution during drying of electrolyte is favored over that related to the enhanced oxygen diffusion and reduction. There exists a critical thickness of solution layer, below which the oxygen solubility is sufficiently low to support the electrochemical corrosion reaction of steel.  相似文献   

13.
T. Nishimura 《Corrosion Science》2010,52(11):3609-3614
The corrosion resistance of Si- and Al-bearing steel was estimated by atmospheric exposure test, and the structure of the rust was examined by EPMA (electroprobe X-ray microanalysis) and TEM (transmission electron microscopy) analysis. Moreover, the electrochemical behaviour of rust was investigated by EIS (electrochemical impedance spectroscopy).The Si- and Al-bearing steel exhibited excellent corrosion resistance in the exposure test as compared with carbon steel (SM). EPMA and TEM analysis showed that Si and Al mainly existed in nanoscale iron complex oxides in the inner rust formed on this steel. The Al K spectrum of the rust exhibited a peak that was the same as that of Al2O3 in the EPMA and TEM-EELS (electron energy loss spectroscopy) analysis. This result suggests that Al was present in the complex oxides as Al3+. In the same way, Si was identified as being in an intermediate state in the complex oxides of the inner rust.EIS measurement of the exposure test samples revealed much higher rust resistance (Rrust) and corrosion reaction resistance (Rt) of Si- and Al-bearing steel compared to that of SM. Finally, it was found that nanoscale complex iron oxides formed in the inner rust of Si- and Al-bearing steel, resulting in increased Rrust and Rt, and corrosion suppression.  相似文献   

14.
Metallic substrates and rust layers of several hundred year old (y.o.) ferrous artefacts were characterised. Composition, structure and porosity of the rust were analysed by different methods: OM, SEM, EDS, EPMA, XRD, μXRD, SAXS, BET and mercury porosimetry.Several important parameters to describe an old rust layer were determined and measured. These parameters will be used for the modelling of long-term indoor atmospheric corrosion.  相似文献   

15.
Corrosion rates of mild steel for long-term immersion were estimated by electrochemical and weight-loss methods. The results showed that application of electrochemical methods yielded erroneous values. The main reason was that, β-FeOOH, produced after long-term immersion with high electrochemical activity in the inner rust layer, exerted significant influence. In electrochemical tests, even small polarization can make β-FeOOH participate in cathodic reaction, which leads to overestimating corrosion rate. In order to confirm it, electrochemical behaviour was studied in aerated and deaerated conditions to investigate the effect of rust layers on reduction reaction. After calibration, the electrochemical measurement result was coincided with the weight loss.  相似文献   

16.
Corrosion products of the rust layer formed on a 2% Si-bearing low alloy steel during atmospheric exposure at a coastal area in Japan for three years were characterized. The inner layer of the rust, i.e., near oxide/metal interface, has a layer structure and the average grain size of corrosion products is finer than that in the upper region that is few micro meter above the interface. A series of nano probe energy disperse X-ray spectroscopy (EDS) and selected area electron diffraction (SAED) analyses performed using a field emission gun (FEG) transmission electron microscope (TEM) revealed that the inner layer consists of an iron rich, coarse grained β-FeOOH matrix and the silicon enriched narrow band composed a mixture of α-FeOOH and nano-meter size silicon oxide. On the other hand, the α-FeOOH single phase area exists where the layer structure did not develop. The result of detailed microstructural analyses indicated that the silicon plays an important role in modifying the rust layer structure.  相似文献   

17.
Eutectoid rail steels are prone to excessive corrosion in the coastal locations in India. In order to minimise this problem, four new rail steels with microalloying elements, Cu, Cr, Ni and Si were designed. The corrosion behaviour of these four rail steels were compared with the behaviour of three rail steels already in commercial application. Quantitative evaluation done by weight loss measurements after simulated wet-dry salt fog exposure test showed similar weight loss values for all rail steels. The FTIR spectra of rust samples revealed the presence of Fe3−xO4 as the major phase in both inner and outer layers of rusts on all the rail steels. Relative amounts of the different rust phases have been compared. SEM micrographs of the rusted samples revealed that the rust on Cr-Cu-Ni and Cr-Cu-Ni-Si rail steel was more compact than other rail steels. Impedance spectroscopy showed that the rust formed on Cr-Cu-Ni and Cr-Cu-Ni-Si rail steels resulted in the higher impedance in the high frequency region, compared to other rail steels.  相似文献   

18.
Accelerated corrosion phenomena of carbon steel constantly immersed in seawater could be simulated in situ via a galvanic coupling of the samples with steel port structures. Three harbours located on different seas and various conditions of immersion were considered so as to study the eventual correlation between dissimilatory sulphite-reductase genes and sulphate-containing corrosion products. In each case, after 6 or 12 months, the rust layers proved to be made of an inner black layer, close to steel surface, and an orange outer layer. Scanning electron microscopy, chemical analyses by inductively coupled plasma/atomic emission spectroscopy, X-ray diffraction and micro-Raman spectroscopy were used to obtain a detailed characterisation of these layers. The inner one proved to be mainly composed of iron sulphides FeS and Fe(II-III) hydroxysulphate green rust , the outer one of Fe(III) oxyhydroxides, with lepidocrocite γ-FeOOH as a major component. The molecular detection of dissimilatory sulphite-reductase, the key enzyme in dissimilatory sulphate reduction by micro-organisms, was applied for the first time to rust layers. This detection was positive in most cases, especially for the inner part of the rust layers. This demonstrates that sulphate reducing bacteria are associated to inside the rust layers, more likely playing the role of a source of sulphate. The systematic presence of iron sulphides also testifies the activity of sulphate reducing bacteria and/or thiosulphate reducing bacteria.  相似文献   

19.
带锈铸铁在3.5%NaCl溶液中的腐蚀行为研究   总被引:1,自引:0,他引:1  
采用增重法和强极化、线性极化技术,研究了已生成较厚砂锈层的带锈铸铁在3.5%NaCl溶液中的腐蚀与电化学行为,分析较厚砂锈层对铸铁腐蚀的影响,结果表明,带锈铸铁的腐蚀速度比裸铸铁的腐蚀速度大,较厚砂锈层不仅不能阻碍腐蚀过程继续发展,而且还有加速腐蚀发展的趋势。带锈铸铁的间浸腐蚀速度比全浸快得多,较厚砂锈层使间浸对带锈铸铁的腐蚀加速作用比对裸铸铁的加速作用更大。  相似文献   

20.
Electrochemical Impedance Spectroscopy (EIS) and film thickness measurements have been employed to study the corrosion monitoring of steel under an electrolyte film in wet–dry cycles simulating a coastal atmosphere. The results indicate that within each cycle, the corrosion rate increases during drying process due to an increase in Cl concentration and an enhancement of oxygen diffusion by thinning out of the electrolyte. As corrosion process proceeds, the corrosion rate increases greatly and reaches a maximum. During subsequent corrosion stage, the corrosion rate decreases greatly and keeps at a low value due to the formation of a stable rust layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号