首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
基于多相流体质点网格方法(MP-PIC)对高灰煤在三维鼓泡流化床气化过程进行了数值模拟研究。在欧拉-拉格朗日框架下将气相和固相分别视作连续介质和离散相处理。首先,将模拟得到的出口处气体组分结果与实验数据进行对比,实验数据与模拟结果具有良好的一致性。其次,研究了煤颗粒在气化炉内的温度、传热系数、速度和停留时间,从颗粒尺度揭示了鼓泡流化床气化炉内的颗粒分布特性和气固流动特征。结果表明:在气化炉入口附近煤颗粒与床层温差最大,传热系数最大;由于流化床内强非线性的气固流动,床中煤温度和传热系数的空间分布不均匀;煤颗粒和床料的瞬时速度具有稳定的波动幅度,其中垂直方向速度波动最明显,且煤颗粒的瞬时速度比床料的瞬时速度略大;由于颗粒间的剧烈碰撞,延长了煤颗粒停留时间。此外,对鼓泡流化床中煤气化过程颗粒尺度的研究,有助于深入了解固体颗粒的流动行为以及气固相相互作用特性,对鼓泡流化床反应器的设计优化具有重要意义。  相似文献   

2.
DSMC-LES方法数值模拟鼓泡流化床内气泡和颗粒流动行为   总被引:1,自引:0,他引:1  
基于稠密气体分子动力学和气固两相流体动力学,建立流化床稠密气固两相离散颗粒运动-碰撞解耦模型,采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞,采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流,单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定.数值模拟流化床中颗粒流动以及气泡的生成、长大和破碎过程,获得颗粒轴向和径向速度的概率密度分布,及颗粒浓度分布.计算结果表明床内气泡的形成造成床内颗粒的循环,使得流化床内颗粒具有不同的轴向和径向脉动速度,颗粒分速度分布近似服从高斯分布.颗粒温度随颗粒浓度增加,达到最大值后,随颗粒浓度增大而下降.流化床颗粒浓度脉动主要是低频部分,高频分量较低,表明在流化床内颗粒浓度脉动频率低,能量高,颗粒浓度脉动主频率为0.4~1.0Hz,其值与Pain et al.获得的颗粒浓度脉动主频率基本吻合.  相似文献   

3.
A novel high temperature optical fiber probe has been developed to study the effects of bed temperature on the local two-phase flow structure in a pilot scale fluidized bed of the FCC particles with bed temperatures ranging from 25°C to 420°C, covering both the bubbling and turbulent fluidization regimes. The results show that fluidization is enhanced and fluctuations of the local two-phase flow structure become more intense with increasing bed temperature. At constant superficial gas velocities, the averaged local particle concentration, the dense phase fraction and particle concentration in the dense phase decrease with increasing bed temperature, whereas both the frequency of the dilute/dense phase cycle and the ratio of the dilute phase duration to the dense phase duration increase. In addition, the effects of temperature on the dilute phase depend on superficial gas velocity. The conventional two-phase models fail to predict these changes of the local flow structure with temperature, which may be explained by the fact that the role of interparticle forces is neglected at different bed temperatures. Indeed, fluidization behaviors of the FCC particles tested increasingly shift from typical Geldart A towards B with increasing temperature due to a decrease of the interparticle attractive forces and a simultaneous increase of interparticle repulsive forces.  相似文献   

4.
Solid concentration and particle velocity distributions in the transition section of a?200 mm turbulent fluidized bed (TFB) and a?200 mm annulus turbulent fluidized bed (A-TFB) with a?50 mm central standpipe were mea-sured using a PV6D optical probe. It is concluded that in turbulent regime, the axial distribution of solid concen-tration in A-TFB was similar to that in TFB, but the former had a shorter transition section. The axial solid concentration distribution, probability density, and power spectral distributions revealed that the standpipe hin-dered the turbulence of gas–solid two-phase flow at a low superficial gas velocity. Consequently, the bottom flow of A-TFB approached the bubbling fluidization pattern. By contrast, the standpipe facilitated the turbulence at a high superficial gas velocity, thus making the bottom flow of A-TFB approach the fast fluidization pattern. Both the particle velocity and solid concentration distribution presented a unimodal distribution in A-TFB and TFB. However, the standpipe at a high gas velocity and in the transition or dilute phase section significantly affected the radial distribution of flow parameters, presenting a bimodal distribution with particle concentration higher near the internal and external wal s and in downward flow. Conversely, particle concentration in the middle an-nulus area was lower, and particles flowed upward. This result indicated that the standpipe destroyed the core-annular structure of TFB in the transition and dilute phase sections at a high gas velocity and also improved the particle distribution of TFB. In conclusion, the standpipe improved the fluidization quality and flow homogeneity at high gas velocity and in the transition or dilute phase section, but caused opposite phenomena at low gas ve-locity and in the dense-phase section.  相似文献   

5.
The hydrodynamics of binary mixture of Geldart Group A and D particles in a turbulent fluidized bed were investigated by experiment and computational fluid dynamics (CFD) method in this paper. The results showed that at low gas velocity, the binary mixtures tend to segregate. At moderate gas velocity, they incline to mix well in the dense phase. Further increasing gas velocity, small particles are entrained and accumulate in the upper regime of the bed, and a segregation trend of the binary mixture appears again. At high gas velocities, segregation efficiency in the continuous classification process increases with increasing the gas velocity and mean residence time of the binary mixture, however, decreases with increasing the small particle content. A strong particle recirculation appears all over the dense phase of the bed, causing an approximately uniform solid composition in radial direction of the fluidized bed.  相似文献   

6.
The fluidization and heat transfer behaviors of a turbulent fluidized bed were investigated using computational fluid dynamics (CFD). The effects of inlet superficial velocity on heat transfer behaviors in a turbulent fluidized bed were analyzed and compared with those operated in other fluidization regimes. The effects of using particles belonging to different Geldart groups in a turbulent fluidized bed on fluidization and heat transfer behaviors were evaluated. For both fluidization regimes investigated, the solids temperature distribution during the heat transfer process became less uniform when the particle size was reduced.  相似文献   

7.
The solids motion in a gas-solid fluidized bed was investigated using a discrete hard-sphere model. Detailed collision between particles and a nearest list method are presented. The turbulent viscosity of gas phase was predicted by subgrid scale (SGS) model. The interaction between gas and particles phases was governed by Newton's third law. The distributions of concentration, velocity and granular temperature of particles are obtained. The radial distribution function is calculated from the simulated spatio-temporal particle distribution. The normal and shear stresses of particles are predicted from the simulated instantaneous particle velocity. The pressure and viscosity of particles are obtained from both the kinetic theory of granular flow and the calculated stresses of particles. For elastic particles the individual lateral and vertical particle velocity distribution functions are isotropic and Maxwellian. The observed anisotropy becomes more pronounced with increasing degree of inelasticity of the particles.  相似文献   

8.
针对磷石膏颗粒湍动流化体系曳力变化的问题,在实验的基础上,考虑非均匀结构对曳力的影响,引入修正因子φ修正Gidaspow曳力模型,对2D流化床进行了数值模拟研究。通过将Gidaspow模型在不同φ值下的模拟结果与实验结果进行对比,研究φ值的改变对模拟结果的影响规律及一定气速范围内磷石膏颗粒湍动流化体系曳力变化特性。结果表明,Gidaspow模型高估了实验体系曳力,对体系流化特性的预测效果较差;适当φ值的引入能明显提高Gidaspow模型对床层膨胀、压降及体系非均匀度的模拟精度。模拟结果反映出φ值越小,床层膨胀高度越低,床内颗粒浓度分布越不均匀,床层压降波动性越大。随着气速的升高(0.144~0.240 m/s),颗粒沿水平方向上的聚集程度加剧,φ值呈非线性减小(0.31~0.24)。流化体系的非均匀度随着气速增加而增大,颗粒浓度沿径向存在较大梯度,两侧边壁处附近出现环-核结构且流场分布对称性较差。  相似文献   

9.
The contact time of particles at the walls of gas fluidized beds has been studied using a radioactive particle tracking technique to monitor the position of a radioactive tracer. The solids used were sand or FCC particles fluidized by air at room temperature and atmospheric pressure at various superficial velocities, covering both bubbling and turbulent regimes of fluidization. Based on the analysis of tracer positions, the motion of individual particles near the walls of the fluidized bed was studied. The contact time, contact distance and contact frequency of the particles at the wall were evaluated from these experimental data. It was found that in a bed of sand particles, the mean wall contact time of the fluidized bed of sand particles decreases by increasing the gas velocity in the bubbling and increases in the turbulent fluidization. In other words, the particle-wall contact time is minimum at the onset of turbulent fluidization in the bed of sand particles. However, the mean wall contact time is almost constant in both regimes of fluidization in the bed of FCC particles. All the existing models in the literature predict a decreasing contact time when the gas velocity in the bed is increased. It was also shown that the contact distance increases monotonously by increasing the gas velocity in the bed of sand particles, while it is almost constant for the bed of FCC particles. Contact frequency has a trend similar to that of the contact time for both sand and FCC particles.  相似文献   

10.
Transient flow behaviors in a novel circulating‐turbulent fluidized bed (C‐TFB) were investigated by a multifunctional optical fiber probe, that is capable of simultaneously measuring instantaneous local solids‐volume concentration, velocity and flux in gas‐solid two‐phase suspensions. Microflow behavior distinctions between the gas‐solid suspensions in a turbulent fluidized bed (TFB), conventional circulating fluidized bed (CFB), the bottom region of high‐density circulating fluidized bed (HDCFB), and the newly designed C‐TFB were also intensively studied. The experimental results show that particle‐particle interactions (collisions) dominate the motion of particles in the C‐TFB and TFB, totally different from the interaction mechanism between the gas and solid phases in the conventional CFB and the HDCFB, where the movements of particles are mainly controlled by the gas‐particle interactions (drag forces). In addition, turbulence intensity and frequency in the C‐TFB are significantly greater than those in the TFB at the same superficial gas velocity. As a result, the circulating‐turbulent fluidization is identified as a new flow regime, independent of turbulent fluidization, fast fluidization and dense suspension upflow. The gas‐solid flow in the C‐TFB has its inherent hydrodynamic characteristics, different from those in TFB, CFB and HDCFB reactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

11.
The gas–solids flow in an industrial-scale semi-dry method desulphurization tower is simulated by the computational particle fluid dynamics (CPFD) approach. Compared with previous studies on desulphurization towers, this study focuses on analyzing particle distribution characteristics such as particle volume fraction, temperature distribution, and residence time. The simulation fully considered the particle–fluid, particle–particle, and particle–wall interactions in the desulphurization tower. Based on these considerations, the effects of flue gas inlet velocity and temperature on the gas–solid distribution characteristics of the desulphurization tower are simulated. An optimization scheme for adjusting the gas–solid flow in the desulphurization tower is proposed. The research results show that the error between the CPFD simulation data and experimental data is small and the changing trend is consistent. The particles in the bed of the desulphurization tower show a typical core–annulus flow. The distribution of gas and particles in the bed has a serious deviation with the increase of the flue gas inlet velocity and temperature. As the axial height of the desulphurization tower increases, the flue gas velocity, temperature, particle concentration, and water vapour distribution in the bed become more uniform. The relatively stable operating conditions for the gas–solid flow in the desulphurization tower is that the flue gas inlet velocity and temperature are 15 m/s and 393 K, respectively. Under these operating conditions, the pressure loss caused by the venturi accounted for 73.6% of the total pressure loss of the desulphurization tower. When the particle radius is between 0–150 μm, the particle size and the flue gas inlet velocity have the greatest influence on the particle residence time. Finally, the distribution of gas and particles before and after the adjustment of the desulphurization tower is compared, which showed that adjusting the bottom structure of the desulphurization tower could optimize the gas–solid flow.  相似文献   

12.
采用大涡模拟(LES)方法模拟气相湍流,颗粒动理学方法考虑颗粒相碰撞产生的动量和能量传递和耗散,采用颗粒相大涡模拟方法(LESp)模拟颗粒脉动导致的能量耗散,同时考虑介观尺度对颗粒相压力的影响,建立了气体-颗粒LES-θ-LESp双流体模型,研究鼓泡流化床内气固两相流动的特性。数值模拟与文献实测颗粒速度和实测颗粒浓度结果具有相同的变化趋势。  相似文献   

13.
Axial and radial segregation studies of a dry placebo pharmaceutical granulate exhibiting a continuous, bimodal particle size distribution have been carried out in a bench-scale conical fluidized bed. Experiments were conducted at superficial gas velocities of 0.5, 0.75, and 1.0 m/s based on the cone inlet diameter and static bed heights of 0.12 and 0.17 m above the distributor. Axial profiles of the mixing index show that granule greater than 800 μm segregate to the bottom of the bed. Radial segregation data shows that the large granule tends to accumulate at the centre bottom and becomes better mixed as the gas velocity is increased. Static bed height showed no influence on radial or axial segregation in this study. It is theorized that observed segregation patterns are because the local velocities in the dilute central core region of the conical bed are less than the terminal velocities of the largest particles in the particle size distribution.  相似文献   

14.
RADIAL DISPERSION AND BUBBLE CHARACTERISTICS IN THREE-PHASE FLUIDIZED BEDS   总被引:2,自引:0,他引:2  
The effects of gas and liquid velocities, liquid viscosity and particle size on the radial dispersion coefficient of liquid phase (Dr) and the bubble properties in three-phase fluidized beds have been determined. A new flow regime map based on the drift flux theory in three-phase fluidized beds has been proposed.

In three-phase fluidized beds, D, increases with increasing gas velocity in the bubble coalescing and in the slug flow regimes, but it decreases in the bubble disintegrating regime. The coefficient exhibits a maximum value in the bed of small particles with increasing liquid velocity at lower gas velocities. However, it increases with increasing liquid velocity at higher gas velocities. In two and three-phase fluidized beds of larger particles (6,8 mm), Dr exhibits a maximum value with an increase in liquid viscosity at lower gas velocities, but it increases at higher gas velocities. The mean bubble chord length and its rising velocity increase with increasing gas velocity and liquid viscosity. However, the bubble chord length decreases with an increase in liquid velocity and it exhibits a maximum value with increasing particle size in the bed. The radial dispersion coefficients in the bubble coalescing and disintegrating regimes of three-phase fluidized beds in terms of the Peclet number in the present and previous studies have been well represented by the correlations based on the concept of isotropic turbulence theory.  相似文献   

15.
对Shedid等搭建的圆柱体流化床采用欧拉?欧拉法进行三维数值模拟,考察了颗粒球形度、表观进气速度和床料初始堆积高度对流化床内垂直加热壁面与流动床料之间对流传热特性的影响,采用有效导热系数分别计算气相和固相的对流传热系数。结果表明,随表观进气速度增大,流化床内颗粒物料湍流运动加剧,加热壁面平均温度和流体平均温度下降,壁面流体间传热平均温度差减小,壁面流体间对流传热系数增大;随初始床料高度增加,流化床内颗粒与加热壁面的接触面积增大,导致固相平均对流传热系数增大。  相似文献   

16.
Flow behaviors of a large spout-fluid bed (I.D. 1.0 m) at high pressure and temperature were investigated by Eulerian simulation. The gas phase was modeled with − ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The development of an internal jet, gas-solid flow patterns, particle concentrations, particle velocities and jet penetration depths at high pressure and temperature at different operating conditions were simulated. The results show that the bed operated at an initial bed height larger than the maximum spoutable bed height resembles the flow patterns of jetting fluidized beds. The radial profiles of particle velocities and concentrations at high temperature and pressure have the similar characteristic shapes to those at ambient pressure and temperature. The particle concentrations and velocities appear to depend on the bed heights when increasing pressure while keeping the gas velocities and temperature constant. The particle velocities in the lower region of the bed increase with increasing pressure, while they tend to decrease in the middle and upper regions of the bed. The particle concentrations have an opposite dependency with increasing pressure. They decrease in the lower region of the bed but increase in the middle and upper regions of the bed. Besides, the jet penetration depths are found to increase with increasing pressure.  相似文献   

17.
In a circulating fluidized bed (7.8 cm-ID x 260 cm-high), flow regime of coal-air system at room temperature has been determined. Bituminous coal particles used were either 0.73 mm or 1.03 mm in the mean diameter having density of 1400 Kg/m3. The transition velocities from bubbling to turbulent beds and the transport velocities between turbulent and fast beds have been determined. The resulting transition velocities between bubbling and turbulent beds were 103 cm/s for 0.73 mm and 130 cm/s for 1.03 mm coal particles, respectively. The transport velocities between turbulent and fast beds were 180 and 209 cm/s for 0.73 and 1.03 mm particles, respectively. In addition, chocking velocities were determined at different solid feeding rates. The resulting values were in the range of 2.55-2.65 m/s for 0.73 mm particle and of 2.77-2.84 m/s for 1.03 mm particle, respectively. The published literature data of the transition velocity between bubbling and turbulent bed have been correlated with particle properties.  相似文献   

18.
采用直接模拟Monte Carlo方法法DSMC)模拟颗粒间的碰撞,采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流.单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定.数值模拟垂直管内气固两相上升流动,对管内气相速度和颗粒相速度、浓度以及聚团流动进行分析.研究平均单个颗粒团聚物的存在时间、颗粒团聚物的时间份额和颗粒团聚物的生成频率分布特性,模拟结果与文献的实验结果基本吻合.  相似文献   

19.
Flow behavior of bubbles and particles in a bubbling fluidized bed were numerically computed using Euler-Lagrange approach. Particle collision was simulated by means of the direct simulation Monte-Carlo (DSMC) method and hard-sphere model. The computed velocities and fluctuations of particles were in agreement with experimental data of Yuu et al. [S. Yuu, H. Nishikawa, T. Umekage, Numerical simulation of air and particle motions in group-B particle turbulent fluidized bed, Powder Technol. 118 (2001) 32-44]. The distributions of velocity, concentration, granular temperature and collision frequency of particles in a bubbling fluidized bed were analyzed. The wavelet multi-resolution analysis was used to investigate flow behavior of bubbles and particles. The bubble frequency of random-like bubble fluctuation was determined from the wavelet multi-resolution analysis over a time-frequency plane.  相似文献   

20.
姚东  刘明言  李翔南 《化工学报》2018,69(11):4754-4762
采用脉冲示踪技术,研究了3 mm床径的小型气-液-固流化床内液相停留时间分布。以KCl为示踪剂,液相为去离子水,气相为空气,固相为平均粒径0.123~0.222 mm的玻璃微珠和氧化铝颗粒,测量流化床出口液相的电导率,得到其停留时间分布曲线。结果表明,增大表观液速和表观气速,分布曲线变窄,平均停留时间缩短,Peclet数增大;固相的存在使液相的平均停留时间增长。表观液速1.96~15.70 mm×s-1,表观气速1.18~1.96 mm×s-1的条件下,流动接近层流;平均停留时间的范围为(19.6±0.34)s~(48.0±0.92)s,建立的Pe经验关联式对实验结果有较好的预测,偏差在±25%以内。研究结果对于小型三相流化床的设计放大具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号