首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Larval and juvenile barramundi, Lates calcarifer (Bloch), were reared intensively on test diets comprising nutritionally supplemented and unsupplemented rotifers, Brachionus plicatilis Muller, and brine shrimp, Artemia salina L. Both growth and survival of barramundi larvae fed on nutritionally supplemented brine shrimp were superior to those of larvae fed on untreated brine shrimp. Barramundi larvae fed diets incorporating untreated brine shrimp exhibited a mortality syndrome which commenced from 20 to 30 days after hatching and resulted in almost total mortality within the next 10 days. Analyses of the proximate, fatty acid and amino acid composition of the live food organisms used in the test diets, and reference samples comprising barramundi egg yolk and extensively reared juvenile barramundi, suggest that this mortality syndrome was primarily associated with the fatty acid composition of the food organisms, particularly the relative amount of 20:5n-3 in the brine shrimp fed to the larvae. These results, and the work of other authors, indicate that there are two mortality syndromes which affect intensively cultured L. calcarifer larvae.  相似文献   

2.
In recent years, a great deal of interest has emerged in the development of microdiets as an economic alternative to live food, in the larval culture of marine fish species. The ability to grow Sparus aurata larvae on a prototype microparticulate diet was examined. To achieve this objective, four feeding regimes differing in the time when the microdiet was introduced (3, 7 or 12 days) and one based exclusively on an inert diet were tested, during the first 22 days of larval life. Significant differences in larval growth were found between the experimental feeding regimes and their corresponding controls (enriched rotifers during the whole experimental period); the larvae in the co-feeding regimes and with an exclusive microparticulate diet were always significantly smaller than larvae fed on rotifers alone. However, the difference was minimised by introducing the inert diet at a later date. A lower survival was found in larvae with a co-feeding regime, in comparison with the control treatments and the survival was significantly lower in larvae fed exclusively on a microparticulate diet. The fatty acid analysis revealed that the experimental microencapsulated diet and the rotifers enriched with Protein Selco® presented relatively similar fatty acid content. In spite of the slightly higher (n?3)/(n?6) and Docosahexaenoic acid (DHA)/Eicosapentaenoic acid (EPA) ratios and somewhat lower highly unsaturated fatty acid (HUFA) content found in the inert diet, the fatty acid composition of the diets cannot explain the differences found in larval performance. The results revealed that the complete replacement of live prey with the tested microparticulate diet is still not possible in S. aurata larval rearing. Nevertheless, better growth and survival results and a substantial reduction in the daily supply of live food can be achieved with a combination of microdiet and live prey.  相似文献   

3.
Weaning marine fish larvae from live prey to a dry microdiet is an important step towards optimizing the commercial production, but early weaning is constrained by the lack of sufficient digestive enzymes at first feeding. This study quantified the activity of five digestive enzymes throughout the larval period of pigfish (Orthopristis chrysoptera [L.]) to assess ontogenetic changes in digestive abilities, and then trials were conducted that determined the optimal time for weaning. The activity of all digestive enzymes was low or undetectable at first feeding (3 days post hatching, dph; 2.5 mm standard length, SL). A substantial increase in activity occurred at 5.7 mm SL (17 dph), 6.9 mm SL (21 dph), 7.7 mm SL (23 dph), 8.4 mm SL (25 dph) and 11.2 mm SL (30 dph) for bile salt‐dependent lipase, trypsin, chymotrypsin, amylase and acid protease respectively. During the weaning experiment, larvae were co‐fed live prey and microdiet beginning 15 dph (4.8 mm SL). Live prey was withdrawn from the diet at 24, 28, 32 or 36 dph, with the control receiving live prey and microdiet throughout (to 43 dph). There were no significant differences in mean final SL among treatments, but survival was significantly lower when larvae were weaned at 24 dph compared to 32–43 dph. Based on the digestive enzyme activity and survival, weaning larval pigfish at 32 dph (11.7 mm SL) when reared at 24°C is recommended.  相似文献   

4.
The gelatin-walled microencapsulated feed for larval shrimp (Penaeus japonicus) was produced using the fluidized bed coating process. The microencapsulated diet showed no significant agglomeration in the coating process and the diameters of the microdiet were in a normal distribution. Scanning electron microscopy microphotographs showed the appearance of a microencapsulated diet with a uniform surface and a continuous film around the core. The retention efficiency of vitamin C was 88.2% in the coating process. The inclusion efficiency, lipid encapsulation efficiency and nitrogen retention efficiency of the microdiet were 92.2 ± 1.6%, 76.8 ± 4.1% and 60.6 ± 5.2% respectively. The mysis α of P. japonicus were reared for 20 days to the later larval stage. The wet weight of larval shrimp increased 300.0% in the microdiet from 10 up to 30 day after hatching. The wet weight and the total length of larvae were greater in co-feeding compared with the control (P<0.05), but there was no significant difference in larval survival between co-feeding and control (P>0.05). There were significant differences (P<0.05) in the wet weight, total length and survival in the microdiet compared with the control. The results indicated a huge potential for the use of the gelatin-walled microencapsulated diet for the partial and total replacement of live food for larval shrimp.  相似文献   

5.
Three experiments were carried out to test the effects of enrichment of live food (rotifers) with varying levels of n-3 highly unsaturated fatty acids (HUFA) on the growth rate and fatty acid composition of red drum larvae. Additionally, the fatty acid compositions of red drum eggs and day-1 larvae were compared. The enrichment techniques were successful in that the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were elevated in the rotifers fed the enrichment diet. Red drum larvae fed the control rotifers produced the highest growth rate of the three experiments. Larvae fed rotifers with no HUFA supplement (NHUFA) had a significantly lower growth rate than the controls for that experiment. The fatty acid compositions of the eggs and day-1 larvae did not vary significantly and contained high levels of 16:0, 16:1 n-7 and DHA (22:6 n-3). Based on these data, the lack of DHA in the diet significantly reduced the growth rates of larval red drum. The 10-day-old red drum larvae had similar fatty acid profiles at the end of the experiments regardless of the diet they were fed, indicating that dietary inputs have little effect on the fatty acid composition of larvae during the first ten days of growth. Red drum larvae appear to have the ability, though limited, to bioconvert EPA to DHA since there was a significant increase in the levels of DHA from day 1 to day 10 in the NHUFA larvae. However, the efficiency of this bioconversion is not sufficient for optimal growth and supplemental DHA at least to the level found in the control rotifers (0.3–0.4mg/100mg tissue) is necessary to maximize growth. The exact role of EPA could not be determined from this study due to the inability to produce an EPA-free rotifer.  相似文献   

6.
Two sets of experiments were carried out to evaluate the potential of eggs and endotrophic larvae of captive Paracentrotus lividus as alternative live prey for marine fish larvae first feeding. The first consisted in rearing sparids, Diplodus sargus and Sparus aurata, larvae until 15 days after hatching in a recirculation system. Compared with the commonly used live prey – rotifer Brachionus spp. – general lower values of survival and growth were obtained when fish larvae were fed with the alternative live prey. Among these, eggs showed to be the preferred feeding. Broodstock feed showed to play a fundamental role on prey quality and consequent fish larvae survival. In the second set of experiments, the 24‐h ingestions of the first feeding larvae in static water were determined for five currently cultured fish larvae species. Except for larger and more predatory Dicentrarchus labrax larvae, there was a trend for higher P. lividus egg ingestion, followed by pre‐plutei and prisms. Prey size, colour and movement affected food selection by fish larvae. It is concluded that, in spite of the alternative live prey being readily consumed by all tested fish larvae, they cannot however presently compete with rotifers in marine fish larvae first feeding.  相似文献   

7.
Because of high costs and labour requirements along with the highly variable nutritional value of live feeds, we investigated the possibility of early weaning for barramundi (Lates calcarifer Bloch) larvae aimed at reducing the use of Artemia. Two commercial microdiets, Gemma Micro (Skretting, Australia) and Proton (INVE, Belgium) were compared for growth and survival of larvae using three weaning protocols, until 33 days posthatch (dph). Enriched rotifers were fed to larvae in all protocols through mouth opening until 21, 18 and 30 dph (protocols 1, 2 and 3, respectively). At 13 dph, enriched Artemia metanauplii were introduced to weaning protocols 1 and 2, and continued until 29 and 24 dph, respectively, whereas protocol 3 did not receive Artemia. Microdiet was initiated at 20, 16 and 13 dph in protocols 1, 2 and 3, respectively. Barramundi larvae grew successfully to 33 dph when co‐fed rotifers and microdiet, and significantly larger larvae resulted from feeding Gemma Micro rather than Proton, when Artemia were not used. However, larvae weaned onto Proton using a longer period of Artemia provision were significantly larger than larvae reared according to all other protocols. Survival was significantly higher in all Gemma Micro protocols when compared with Proton protocols. This was in part due to higher cannibalism when using Proton compared with Gemma Micro (22.8 ± 0.9% and 9.2 ± 0.6%, respectively). Cannibalism became more noticeable in all protocols when the larvae reached 7–8 mm standard length and further increased after the cessation of live feed. Tank biomass production was the highest when larvae were weaned onto Gemma Micro including a short period of Artemia provision as a result of a combination of high growth and survival. However, similar biomass production resulted when larvae were weaned directly from rotifers onto Gemma Micro and/or from a prolonged Artemia period onto proton. The success of weaning barramundi larvae directly to microdiet from rotifers, thus eliminating the need for Artemia, was influenced by the microdiet. Relatively higher levels of free amino acids and lipids were believed to contribute to increasing larval growth and survival. Larvae that were fed Gemma Micro showed higher growth when Artemia were utilized for a shorter period, while Proton‐fed larvae benefited from an extended Artemia feeding period.  相似文献   

8.
In this work, we investigated the effects of various feeding treatments on the survival and growth of Huso huso and Acipenser persicus larvae during a 20‐day culture period. Three replicate groups (250 fish/replicate) of first‐feeding larvae were fed according to four main feeding regimes: (1) live food (live nauplii of brine shrimp Artemia urmiana); (2) indirect transition (5–7 days live food followed by gradual transition to formulated diet); (3) direct transition (using different combinations of live and formulated diet from the start feeding onwards); and (4) formulated feed (FD) from the start of feeding. In H. huso larvae, combining live food and manufactured diets (co‐feeding) from the first feeding stage onwards (direct transition) resulted in significantly higher weight gain than the other regimes. Survival was significantly higher in H. huso larvae fed solely live food or the direct transition regimes compared with indirect transition and FD. In A. persicus larvae, growth and survival were higher in the indirect transition feeding regime than in the other regimes. On the basis of the results of this study, we recommend co‐feeding of H. huso immediately from the commencement of exogenous feeding, but co‐feeding of A. persicus should start 7 days after prior feeding with live food.  相似文献   

9.
The development of neutral lipase and phospholipase activities was studied in larval turbot fed live prey. Activities of neutral lipase and phospholipase (activity larva−1) increased significantly between days 6 and 24 after hatching in turbot larvae. The specific activities of both enzymes (activity μg protein−1) decreased in older larvae. Feeding of a microdiet for 3 days (days 10–13) affected the lipolytic activity of neutral lipase and phospholipase negatively, compared to the larvae fed on rotifers. Since neutral lipase activities in whole larval homogenates and in the gut were significantly lower, it suggests a reduced synthesis rate and a reduced secretion of the enzyme in larvae fed the microdiet. A correlation between neutral lipase and phospholipase activities was found in larvae fed rotifers, but not in larvae fed the microdiet. This may indicate different regulating and stimulating mechanisms for these enzymes. The contribution of exogenous enzymes from ingested live prey to the total larval enzyme activity was about 6% for neutral lipase and 10% for phospholipase on day 6. The exogenous prey enzymes accounted for only 2% of the total activities in 12-day-old turbot larvae, suggesting that enzymes from prey did not contribute considerably to the digestion of lipids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

11.
The effects of culture parameters of tank color and feeding regimes were examined on larval white bass Morone chrysops during 1994–1995. Under high surface illumination (998 lux), dark tank walls were essential for effective prey capture. Larvae reared in clear glass aquaria did not grow and had died by day 6 of the study. In contrast, 48.7% of the larvae reared in black-walled tanks were alive on day 24 and had grown to 17.2 mm total length (TL). In another study, larvae were fed rotifers Brachionus plicatilis and Artemia nauplii in different feeding protocols. In one treatment only rotifers (10/mL) were fed day 1 (4 d post-hatch), rotifers and Artemia (3/mL) were fed days 2–4, and Artemia fed days 5–15. This protocol produced similar growth (mean size 11.7 mm TL) and survival (mean 30.3%) as slower weaning times from rotifers to Artemia . Juveniles (27-day-old, 17.2 mm TL) were converted to a dry crumble diet over a 14-d period by slow transfer from a combination diet consisting of live Artemia nauplii, frozen adult Artemia , plankton flakes and dry crumbles. Survival offish weaned to the dry diet was 64.5%. Most of the mortalities during the weaning period were fish with uninflated swim bladders which were cannibalized by larger fish. Using the above tank culture techniques, white bass were reared to a mean size of 73.2 mm TL (mean weight 5.8 g) over a 73-d period. This essentially closes the life cycle of white bass.  相似文献   

12.
One of the major challenges in marine fish culture is how to provide live food of adequate size and nutritional quality for first‐feeding larvae. Commonly used live food organisms, rotifers and brine shrimp, may not always be the best option. To determine the suitability of different zooplankton in the larviculture of Elacatinus figaro, three diets were tested: RE – rotifers Brachionus sp. (10 ind mL?1)+ciliate Euplotes sp. (10 ind mL?1), enriched with fatty acids; RC – enriched rotifers (10 ind mL?1)+wild copepod nauplii (10 ind mL?1); and R – enriched rotifers (20 ind mL?1). Survival rates were estimated 10 days after hatch (DAH) for the three test groups, and growth rates were evaluated for RE and R at 10 and 20 DAH. Although survival rate was numerically higher for the RC diet (41.1±14.2%), no significant difference was detected between groups fed RE (20.5±18.1%), RC or R (32.1±16.5%). At 10 DAH, the growth rate was significantly higher in RC (5.7±0.6 mm) than in R (4.6±0.5 mm), a trend that was also observed at 20 DAH for RC (8.6±0.5 mm) and R (5.8±0.7 mm) (P<0.05). E. figaro larvae fed on ciliates did not show satisfactory results, whereas feeding copepod nauplii enhanced growth.  相似文献   

13.
Many coral reefs are threatened because of anthropogenic impacts such as destructive fishing methods for marine ornamentals. The marine ornamental industry is currently almost completely dependent upon wild collections. The development of commercially feasible methods to culture ornamental species could help to reduce the need for wild‐collected specimens and reduce pressure on coral reefs. Advances in larval rearing and nutrition would help overcome the bottlenecks that impede the commercial production of many marine ornamental species. This article focuses on research for improving the production of the fire shrimp, Lysmata debelius. Experiments were performed with larval fire shrimp to evaluate (1) the importance of essential fatty acid enrichment of live prey (rotifers and Artemia) and (2) feeding penaeid shrimp muscle tissue to improve survival to metamorphosis. We also provide the fatty acid composition of Day‐1 posthatch fire shrimp larvae. The enrichment of live prey with docosahexaenoic acid did not improve larval growth, survival, or time to metamorphosis, but larvae fed live prey together with pureed penaeid shrimp muscle had survival rates of 9.8 ± 1.2%. The data and protocols developed in this study provide a foundation and baseline for future fire shrimp larval studies.  相似文献   

14.
A commercial microencapsulated diet was used as a total or partial replacement of live prey for feeding larvae of winter flounder Pseudopleuronectes americanus (Walbaum), a potential alternative finfish species for coldwater marine aquaculture. Growth performance (morphometric measurements and biochemical composition) and nutritional condition (RNA/DNA ratios) of larvae fed live prey (Brachionus plicatilis Müller), a microencapsulated diet or a mixed diet of live prey and microcapsules were compared. Newly hatched larvae were unable to digest microencapsulated diet; live prey at initial feeding was required for their survival and growth. Larvae offered a mixed diet showed slower growth than larvae fed exclusively with live prey. However, at the onset of stomach differentiation, RNA/DNA ratios (indicators of protein synthesis potential) of the larvae fed both diets became similar. We suggest that, at that stage (size 5.5–6.3 mm), enzymatic activity had developed enough to allow digestion of inert food. As the RNA/DNA ratio is a good indicator of nutritional condition, it appears to be an interesting tool for the assessment of diet adequacy in marine larval feeding technology.  相似文献   

15.
Diet of larval and juvenile pikeperch (Stizostedion lucioperca) reared in ponds wasinvestigated and compared with the diet ofpikeperch from a reservoir. The standard lengthof first feeding pikeperch larvae in ponds was6.1 mm, on average, and although rotifers werepresent in the diet, their numericalcontribution can be considered asinsubstantial. Rotifers were soon replaced bynauplii of cyclopoid copepods, which werehighly positively selected and contributedlargely to the diet up to a larval length of 10 mm.Daphnia spp. were consumed from the onsetof exogenous feeding, but were not positivelyselected until 15 mm. Anothersmaller cladoceran Bosmina longirostriswas highly negatively selected and did notcontribute significantly to the diet. A clearpositive selection for larger relatively tosmaller prey and a preference for Daphniafrom a body length of 15 mm onwards could beobserved. In the reservoir, rotifers were notfound in the diet of pikeperch larvae even inthe smallest individuals. Dominant food itemswere nauplii and 1st copepodite instar ofEudiaptomus gracilis and Cyclopsspp. Cladocerans – Daphnia galeata andto a lesser extent Diaphanosomabrachyurum appeared in the pikeperch diet at alength of about 10 mm. A shift from copepods toDaphnia spp. and especiallyLeptodora kindtii could be recognised inpikeperch at a length of 20 mm. When comparing ourdata from nursing ponds with the data fromímov reservoir, similar trends in dietcomposition were observed.Growth of pikeperch was found significantlyfaster in nursing ponds than in the reservoir.Slow growth of reservoir pikeperch was probablyan artefact due to the prolonged spawningperiod in the reservoir. Larvae and juvenilesfrom later spawnings decreased the average sizeof the population over the studied period. Innursing ponds lowest average standard length atharvest was found in the pond with the highestnumbers of fish, and vice versa in the pondwith the lowest numbers the largest standardlength was recorded. This result corresponds tothe increased intracohort food competitionamong juvenile pikeperch with increasingstocking density.  相似文献   

16.
Like most small marine fish larvae, the stomachs of winter flounder Pseudopleuronectes americanus are undeveloped at first feeding and have relatively reduced digestive capacity. This work was undertaken to test whether larvae at the onset of stomach differentiation (larval size about 5.5 mm) could be early weaned onto a commercial microencapsulated diet. We assessed the effect of early weaning by first comparing growth performance (standard length, total protein content and age at metamorphosis) of larvae fed enriched live prey from first feeding to a size of 5.5 mm and then reared on three different feeding regimes until metamorphosis: (1) live prey (LP) as a control group; (2) mixed feeding of live prey and microencapsulated diet (LP‐ME); (3) exclusively microencapsulated diet (ME) after fast weaning over 4 days (to a larval size of 6.2 mm). No differences were observed between larval development in the two first groups, which began metamorphosis at 40 days old. The larvae of the third group showed significantly slower growth that resulted in a delay of 4 days in the onset of metamorphosis. Differences in live prey availability between the treatments and the short transition period to allow the larvae to adapt to the new diet were identified as possible contributing factors to the slower growth and to the delay in metamorphosis of early weaned larvae. In a second experiment, the transitional weaning period was increased until the larvae were 6.6 mm in length. Weaning at that size resulted in no slowing of growth or delay in metamorphosis, suggesting that the feeding schedule was adequate.  相似文献   

17.
Use of ongrownArtemia in nursery culturing of the tiger shrimp   总被引:1,自引:0,他引:1  
Juvenile and adultArtemia produced in a semi flow-through culture system were used as food for postlarval shrimp. The growth performance of shrimp reared on such ongrownArtemia live prey is identical to the growth obtained when feeding newly hatchedArtemia. However, a significantly better stress resistance is obtained when the postlarvae are exposed to a low salinity in a stress test. Besides nutritional and energetic advantages, the use ofArtemia biomass for feeding postlarval shrimp also results in improved economics as expenses for cysts and weaning diets can be reduced.  相似文献   

18.
The suitability of the freshwater rotifer Brachionus calyciflorus as starting food for the larviculture of African catfish, Clarias gariepinus Burchell, was investigated through studies of growth and fatty acid profiles in relation to different feeding sequences combining live food and dry diet in various proportions and during different mixed feeding periods. The best results for survival were observed when rotifers were supplied during the first week of feeding, i.e. sequences R2 (exclusive supply of rotifers, then dry diet from day 8, onwards) and R5 (50% rotifers+50% dry diet until day 7, then dry diet 100%), reaching 99.2% and 96.3%, respectively. The specific growth rate of larvae was largely dependent on the duration of preliminary feeding with the rotifers. A feeding with rotifers as a unique food source did not produce satisfactory growth during the first week of feeding. A precocious weaning showed that the highest growth rate and protein efficiency ratio (PER) can be obtained by feeding the larvae rotifers in association with a dry diet. The best PER and protein productive value (PPV) were recorded with feeding sequences R2 and R5. On the other hand, the series of polyunsaturated fatty acids was characterized by a relatively constant concentrations, and represented about 11.6% of the total fatty acids in sequence R2 because of the presence of the acids of the linoleic series, which apparently originated from the food. The R5 regime provided larvae with significant amounts of highly unsaturated fatty acids, such as linolenic acid C18:3n-3.  相似文献   

19.
In mass culture of Pacific bluefin tuna Thunnus orientalis, yolk‐sac larvae of other species are fed as a major prey item to tuna larvae from 7 to 8 mm in total length. Marked growth variations in tuna larvae are frequently observed after feeding of yolk‐sac larvae, and this variation in the growth of tuna larvae is subsequently a factor leading to the prevalence of cannibalistic attacks. To elucidate details of the mortality process of hatchery‐reared tuna larvae after the initiation of yolk‐sac larvae feeding, we compared the nutritional and growth histories of the surviving (live) tuna larvae to those of the dead fish, found dead on the bottom of the tank, as direct evidence of their mortality processes. Cause of mortality of tuna larvae 3 and 5 days after the initiation of feeding of yolk‐sac larvae was assessed from nitrogen stable isotope and otolith microstructure analyses. Stable isotope analysis revealed that the live fish rapidly utilized prey fish larvae, but the dead fish had depended more on rotifers relative to the live fish 3 and 5 days after the initiation of feeding of yolk‐sac larvae. The growth histories based on otolith increments were compared between the live and dead tuna larvae and indicated that the live fish showed significantly faster growth histories than dead fish. Our results suggest that fast‐growing larvae at the onset of piscivory could survive in the mass culture tank of Pacific bluefin tuna and were characterized by growth‐selective mortality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号