首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluated the feasibility of treating color filter effluent by H2O2/UV pre-oxidation and membrane postseparation for in-house reuse. The effluent qualities were TOC of 5.8–34 mg/L, color of 46–138 ADMI, and conductivity of 1020–3500 μS/cm. Although the RO separation could directly remove TOC, color, and conductivity effectively, the serious fouling problem still existed. Through H2O2/UV pre-oxidation (UV = 13 W, H2O2 = 200 mg/L), organic and biofouling were inhibited to increase the normalized flux decline from 5% to 77%. That is, H2O2/UV pre-oxidation could mitigate the permeate flux decline as well as to improve the water quality for water reuse.  相似文献   

2.
The additional removal of trace organic contaminants (TOrCs) provided by advanced water and wastewater treatment inevitably requires additional financial costs, which must be estimated to support utility planning and compare alternatives. This study presents conceptual-level (Class 4) capital and annual operations and maintenance (O&M) cost curve equations to aid evaluations of advanced treatment trains for water reuse. The cost curve equations are broadly applicable to the water reuse community, particularly those interested in ozone-based treatment trains. Unit processes include microfiltration or ultrafiltration membranes (MF/UF), nanofiltration or reverse osmosis membranes (NF/RO), ozone (with or without hydrogen peroxide, H2O2), ultraviolet (UV) treatment with H2O2 (UV/H2O2), and biological activated carbon (BAC); all cost curves are for a unit process and can be added together to obtain costs for a combined treatment train. The cost curves indicate that at all plant capacities (1 to 500 MGD), membrane treatment (e.g., MF or RO) represents the highest cost unit process, ozone the least, and BAC or UV/H2O2 fall in between. Additionally, the relationship between ozone dose and TOrC removal is discussed with a demonstration of how costs change with increasing ozone dose to achieve desired TOrC destruction.  相似文献   

3.
The advanced chemical oxidation of raw and biologically pretreated textile wastewater by (1) ozonation, (2) H2O2 /UV − C oxidation and (3) sequential application of ozonation followed by H2O2 /UV − C oxidation was investigated at the natural pH values (8 and 11) of the textile effluents for 1 h. Analysis of the reduction in the pollution load was followed by total environmental parameters such as TOC, COD, UV–VIS absorption kinetics and the biodegradability factor, fB. The successive treatment combination, where a preliminary ozonation step was carried out prior to H2O2 /UV − C oxidation without changing the total treatment time, enhanced the COD and TOC removal efficiency of the H2O2 /UV − C oxidation by a factor of 13 and 4, respectively, for the raw wastewater. In the case of biotreated textile effluent, a preliminary ozonation step increased COD removal of the H2O2 /UV − C treatment system from 15% to 62%, and TOC removal from 0% to 34%. However, the sequential process did not appear to be more effective than applying a single ozonation step in terms of TOC abatement rates. Enhancement of the biodegradability factor (fB) was more pronounced for the biologically pretreated wastewater with an almost two‐fold increase for the optimized Advanced Oxidation Technologies (AOTs). For H2O2 /UV − C oxidation of raw textile wastewater, apparent zero order COD removal rate constants (kapp), and the second order OH· formation rates (ri) have been calculated. © 2001 Society of Chemical Industry  相似文献   

4.
The degradation of the organic content of a bleaching Kraft mill effluent was carried out using Advanced Oxidation Processes (AOPs). The study was focused on the identification of the AOP, or combination of AOPs, that showed the highest efficiency together with the lowest cost. Direct UV photolysis (UV), TiO2 assisted‐photocatalysis (TiO2/UV), Fenton, Fenton‐like, and photo‐Fenton reactions (Fe(II)/H2O/UV), UV‐assisted ozonation (O3/UV) and addition of Fe2+ and/or H2O2 to the TiO2/UV and the O3/UV systems, were used for the degradation of a conventional cellulose bleaching effluent. The effluent was characterized by the general parameters TOC, COD and color, and analyzed for chlorinated low molecular weight compounds using GC–MS. The costs of the systems per unit of TOC reduction were compared. Fenton, Fenton‐like and photo‐Fenton reactions achieved better levels of TOC degradation than photocatalysis and with lower cost's than photocatalytic treatments. Ozonation is an effective but rather expensive process. The use of UVA light, however, increased the effectiveness of ozonation with a significant decrease (>25%) in the operational cost. © 2002 Society of Chemical Industry  相似文献   

5.
Combined processes of biological anaerobic baffled reactor (ABR) and UV/H2O2 at a laboratory scale were studied to treat a synthetic slaughterhouse wastewater. In this study, the total organic carbon (TOC) loadings of 0.2-1.1 g/(L day) were used. The results revealed that combined processes had a higher efficiency to treat the synthetic slaughterhouse wastewater. Up to 95% TOC removal was obtained for an influent concentration of 973.3 mgTOC/L at the hydraulic retention time (HRT) of 3.8 days in the ABR and 3.6 h in the UV photoreactor. Meanwhile, up to 97.7% and 96.6% removal of chemical oxygen demand (COD) and 5-day carbonaceous biochemical oxygen demand (CBOD5) were observed in the ABR for the same influent concentration, respectively. Comparatively, for an influent concentration of 157.6 mgTOC/L, the UV/H2O2 process alone with the TOC loading of 0.06-1.9 g/(L h) was also studied, in which, up to 64.3%, 83.7%, and 84.3% of TOC, COD, and CBOD5 removal were observed, respectively, at the HRT of 2.5 h with hydrogen peroxide (H2O2) concentration of 529 mg/L. It was found that individual ABR and UV/H2O2 processes enhanced the biodegradability of the treated effluent by an increased CBOD5/COD ratio of 0.4 to 0.6. An optimum H2O2 dosage of 3.5 (mgH2O2)/(mgTOCin h) was also found for the UV/H2O2 process.  相似文献   

6.
Since the quality of bauxite resources has decreased and the organic carbon content has increased, different approaches are explored to remove the organic matter in alumina production. Advanced oxidative processes (AOPs) represent a possibility since they are widely used as an alternative for treating wastewaters to degrade organic pollutant molecules and in hydrometallurgy processes. For this reason, the goal of the project was the ozonation of Bayer liquor for organic matter removal. The ozone concentration was evaluated over time, as well as the H2O2 concentration and temperature. Results showed that the total organic carbon (TOC) removal achieved 19% in the most optimized condition with a kinetic rate of 0.0157 h−1 –21.9 mg/L O3, 0.05 mol/L H2O2 at 80°C. The colour of the liquor changed from dark brown to white-yellow, indicating that the size of the organic compounds had decreased. Also, 95.4% of degraded TOC formed CO2, and almost 50% of the organic matter was oxalate compounds. The energy required for ozone production versus removed organic matter demonstrated that the technique proposed might be technically and economically feasible to be applied in the Bayer process. The study demonstrates the application of AOP in an extremely alkaline condition.  相似文献   

7.
Reuse of water in mining helps reduce the volume of tailings directed to dams, avoiding overloads and ruptures, as occurred in Brumadinho, Brazil. Water reuse in mining requires treatment mainly for removing the surfactant substances used. Photo-Fenton and UV/H2O2 showed 96% to 98% degradation results of anionic surfactants within 5 minutes, suggesting this technique is faster than biological systems that can take days. This paper aims to study the degradation of a surfactant used in the flotation process by UV/H2O2, Fenton, and photo-Fenton oxidation techniques. The compound was characterized by FTIR and MALDI-TOF. In degradation experiments, the variation in reactants concentrations was evaluated with hydrogen peroxide, iron sulphate heptahydrate, and oxalic acid. We used a synthetic solution of surfactant in the reverse flotation of ore with 180 mg/L. The reaction was monitored with TOC analysis and a spectrophotometer throughout the reaction. The UV/H2O2 and Fenton system were studied by varying peroxide and iron concentrations, with 120 minute tests. Additionally, photo-Fenton concentrations, the pH variation (1.5-8.0), temperature (15°C, 21°C, and 60°C), and time were evaluated. The results showed the most efficient degradation was that using photo-Fenton, which achieved total TOC removal using 4500 mg/L of peroxide and 364 mg/L of iron for 330 minutes, while the UV/H2O2 system achieved 29% and 49% TOC removal of the Fenton. It is verified that the oxidative processes can be applied to degrade the surfactants present in the water recovered from the flotation processes.  相似文献   

8.
A detailed investigation on photooxidation of linear alkyl benzene (LAB) industrial wastewater is presented in this study. The process analysis was performed by varying four significant independent variables including two numerical factors (initial pH (3–11) and initial H2O2 concentration (0–20 mM)) and two categorical factors (UV irradiation and ozonation). The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). To assess the process performance, two parameters viz. TCOD removal efficiency and BOD5/COD were measured throughout the experiments. A maximum reduction in TCOD was 58, 53, 51, and 49%, respectively for UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2 processes at the optimum conditions (initial pH of 7, initial H2O2 concentration of 100 mM, and reaction time of 180 min). A considerable increase in BOD5/COD ratio was obtained in the combined processes (0.46, 0.51, 0.53, and 0.55 for UV/H2O2, UV/O3, H2O2/O3 and UV/H2O2/O3, respectively) compared to the single oxidant process (0.35). The results showed that mineralization of the LAB industrial wastewater in neutral pH is more favored than in acidic and basic pH. Gas chromatography–mass spectrometry (GC–MS) was applied to show the fate of organic compounds. In conclusion, the photooxidation process (UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2) could be an appropriate pretreatment method prior to a biological treatment process.  相似文献   

9.
Optimization of UV/H2O2 process for integration with biological waste treatment unit was done by Taguchi's orthogonal design. Four factors were considered for optimization: Dosage of H2O2, pH, circulation rate and number of doses of oxidant. For each of the four factors, experiments were run at four levels. For reduction in TOC, single dosage of hydrogen peroxide was observed to be more effective than dosing the same quantity in 2, 4 or 6 equal parts. The effect of circulation rate was found to be insignificant. If AOP were to be designed as a pretreatment step before biological oxidation, 1 mole H2O2/mole TOC is the optimum level of dosage. This level of addition increased biodegradability. If AOP were to be designed as a post-treatment step after biological oxidation, then 4 mole H2O2/mole TOC would be the optimum level of dosage. At this level, decrease in TOC was high. Higher pH of the waste liquor generally favoured reduction in TOC.  相似文献   

10.
《分离科学与技术》2012,47(7):1535-1551
Abstract

Conventional biological wastewater treatment processes often fail in the elimination of finishing agents contained in textile wastewater such as dyes, surfactants, and softeners. Therefore, discharges from the textile industry are known as a major source of water pollution reaching groundwater and even drinking water treatment. Physicochemical treatment and advanced treatment processes (AOP) were applied to eliminate the pollutants prior to discharge. Ozone (O3), O3/UV, hydrogen peroxide/UV (H2O2/UV), Fenton's reagent (Fe2+/H2O2) were applied to eliminate by oxidation while ultrasonication (US) alone, US/UV or powdered activated carbon (PAC) were used for the physicochemical treatment. Elimination was monitored by a conventional sum parameter analyses (COD, BOD, DOC) while gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with MS and tandem mass spectrometry (LC/MS and ‐MS/MS) was applied for follow‐up of pollutants and their degradation products. The application of PAC, Fenton, and O3/UV resulted in the highest dissolved organic carbon elimination. A complete or partial elimination and/or degradation of non‐polar or polar pollutants was observed by GC/MS or flow injection analysis/MS (FIA/MS) respectively. LC/MS and MS/MS analyses confirmed that ethoxylated surfactants (AEO) present in the original wastewater could be oxidized or destroyed resulting in carboxylated AEO and polyethylene glycol (PEG) or even carboxylated PEG.  相似文献   

11.
Dark- and photo-Fenton type processes, Fe2+/H2O2, Fe3+/H2O2, Fe0/H2O2, UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2, were applied for the treatment of model colored wastewater containing two reactive dyes, C.I. Reactive Blue 49 and C.I. Reactive Blue 137, and degradation kinetics were compared. Dye degradation was monitored by the means of UV/VIS, adsorbable organic halides (AOX) and total organic carbon (TOC) analysis, thus determining decolorization and dechlorination of triazine structure, as well as mineralization of model colored wastewater. Both dark- and photo-Fenton type processes were proven to be very efficient for color removal; ≥98% was achieved in all cases. Significant improvements in the mineralization of studied dyes were achieved by the assistance of UV light, as it was expected. It was demonstrated that the degradation kinetic of applied dyes depended on the presence of UV light, as well as type of iron catalyst and dye structure. On bases of the obtained experimental results, the mathematical models were developed describing dye degradation kinetics in all studied systems. Since UV light was used in order to enhance the efficiency of dark-Fenton type processes, mathematical model describing dye degradation by UV photolysis providing the values of quantum yields for each of the dye was developed and incorporated in model for photo-Fenton type processes. A sensitivity analysis for the evaluation of importance of each reaction used in mathematical models was also performed.  相似文献   

12.
The reduction and degradation of total organic carbon (TOC) and bacteria from a secondary effluent of synthetic slaughterhouse wastewater using vacuum-ultraviolet (VUV) and ultraviolet-C (UV-C) processes and their combination (UV-C/VUV and VUV/UV-C) were investigated. The TOC removal rates under continuous mode operation ranged from 5.5 to 6.2%. In addition, the treatment with the UV-C/H2O2 and VUV/H2O2 processes under continuous mode operation doubled the TOC removal rates 10.8 and 12.2%, respectively. The optimum molar ratio of H2O2/TOC was found to be 2.5 and 1.5 for the UV-C and VUV processes, respectively. It was observed that all photochemical processes were able to totally inactivate different strains of bacteria with concentrations up to 105 CFU/mL within 27.6 s. Finally, a kinetic model was developed to simulate the TOC degradation from a secondary effluent of synthetic slaughterhouse wastewater.  相似文献   

13.
The recalcitrant pharmaceutical compounds carbamazepine, clofibric acid, diazepam, and diclofenac were monitored in municipal wastewater by ESI-LC-MS and -MS-MS in positive and negative mode. Although biological treatment by conventional and membrane bioreactor failed, the advanced oxidation methods using ozone (O3), O3/UV or hydrogen peroxide in combination with UV (H2O2/UV), successfully achieved their complete elimination. Target compounds could be confirmed as permanently present pollutants in Aachen-Soers wastewater in concentrations between 0.006 and 1.9 μg L?1 prior to AOP treatment resulting in a complete elimination.  相似文献   

14.
BACKGROUND: Endocrine disruptors, as in the case of bisphenol A (BPA), are increasingly found in aqueous effluents. The degree of mineralization of a bisphenol A (BPA) aqueous solution after applying several oxidation treatments has been investigated. RESULTS: UV‐C photolysis of BPA allowed calculation of the quantum yield, ϕλ=254 = 0.045 ± 0.005 mol Einstein−1 but only 15% of the initial organic carbon content (TOC) was eliminated. Better results (80% conversion) were obtained after TiO2 addition. Ozone inmediately reacts with BPA. Again, TiO2 addition in the presence of O3 was capable of increasing the mineralization level (60%). The photolytic ozonation of BPA was capable of completely eliminating TOC. The presence of activated carbon in the O3/UV and O3/UV/TiO2 systems significantly enhanced the TOC removal reaction rate (100% conversion in 20 min). CONCLUSIONS: Processes such as ozonation or photolysis are capable of efficiently removing BPA from water however, mineralization levels are rather low. Addition of TiO2 to O3 or UV‐C significantly enhances TOC removal. The remaining organics still account for an average 20–40% of the initial organic carbon. The combination of O3/UV‐C is capable of completely mineralizing BPA. Activated carbon and/or TiO2 addition to the system O3/UV‐C improves the TOC depletion rate. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
Background: The wastewater originating from the production of acrylonitrile‐butadiene‐styrene (ABS) resin is a toxic and refractory industrial wastewater. The purpose of this work is to investigate the characteristics of adsorption and biodegradation of biological activated carbon (BAC) for ABS resin wastewater. Results: More than 80% of chemical oxygen demand (COD), total organic carbon (TOC) and organic nitrogen (Org‐N) was removed after the 100th run in BAC with the help of bioregeneration, and the treatment efficiency of BAC was higher than that of adsorption and biodegradation alone. The initial Org‐N was mainly transformed into NH4+‐N, and the transform efficiency reached 65% after the 100th run. After bioregeneration, the COD and TOC removal efficiencies of BAC reactor reached 88.97% and 86.26%, respectively. The BAC had different bioregeneration efficiencies of 94.41, 64.82, 61.05 and 40.04% for 3, 3‐imminodipropiononitrile, 3, 3‐oxydipropiononitrile, α, α‐dimethyl‐benzylalcohol and acetophenone, respectively, which mainly resulted from the different polarity of the compounds. Conclusion: BAC could protect microorganisms from shock loadings of toxic, refractory and complicated ABS resin wastewater. The mechanism of the organic pollutants removal by BAC consisted of three phases including adsorption, bioregeneration and stability. © 2012 Society of Chemical Industry  相似文献   

16.
The decolorization and mineralization of two reactive dyes C.I. Reactive Blue 4 (RB 4) and C.I. Reactive Blue 268 (RB 268) were studied using various advanced oxidation processes (AOPs) such as H2O2/UV, H2O2/UV/Fe2+, and the H2O2/UV/Fe°. All processes were performed within a laboratory-scale photo-reactor setup. The experimental results were assessed in terms of absorbance (A) and total organic carbon (TOC) reduction. The main degradation products were identified by high resolution gas chromatography/high resolution mass spectrometry analyses. The results of our study demonstrated that the additions of moderate concentrations of H2O2 and Fe catalyst during the AOPs evidently increased the decolorization efficiencies within the first few minutes of the processing time (5–10 min) for both tested dyes, and prolonged irradiation does not necessarily significantly improve decolorization. On contrary, TOC removal rate increased with the processing time and with the addition of the catalyst from 40–50% up to 70–80% at defined experimental conditions. All the tested AOPs were very successful methods for RB 268 decolorization, having very complex structure and much higher molecular weight compared to the dye RB 4. This is important from both economic and ecological points of view.  相似文献   

17.
PWN's water treatment plant Andijk was commissioned almost 40 years ago. It services water from the IJssel Lake by conventional surface water treatment. In view of taste and odor problems the plant was retrofitted with GAC filtration 25 years ago. The finished water quality still complies with all E.C. and Dutch drinking water standards. Nevertheless an upgrade is desired to avoid the use of chlorine and to extend the barriers against pathogenic micro-organisms and a broad range of organic micropollutants such as pesticides, rocket fuel by-products (NDMA), fuel oxygenates (MTBE), solvents (dioxane), endocrine disruptors, algae toxins, pharmaceuticals, etc. UV/H2O2 treatment was selected for both primary disinfection and organic contaminant control. The disinfection requirements were based on a 10?4 health risk. The required 3 log inactivation for Giardia and Cryptosporidium was achieved by an UV dose lower than 20 mJ/cm2. The highest UV dose, 105 mJ/cm2, was needed for the inactivation of spores of Sulphite Reducing Clostridia. Reactivation of protozoa was established for UV doses up to 25 mJ/cm2, for doses higher than 45 mJ/cm2 no reactivation was observed. In view of the raw water concentrations the required organic contaminant degradation was set at 80%. Collimated beam and pilot-plant work showed that the required degradation can be achieved by the proper combination of electric energy and H2O2. In a UV reactor optimized for organic contaminant control, UV dose of 540 mJ/cm2 (about 0.5 kWh/m3) and 6 mg/L H2O2 were needed. Under those conditions pesticides (atrazine), NDMA, MTBE, dioxane, endocrine disruptors (bisphenol A), microcystine and pharmaceuticals (diclofenac, ibuprofen) could be removed up to the required 80%. Bromate formation was absent while formation of primary metabolites was insignificant. The UV dose for organic contaminant control is about five times higher than the dose needed for disinfection. The UV/H2O2 process was implemented into the existing treatment train between the sand and GAC filters. In the GAC filters excess H2O2 is degraded, nitrite is converted into nitrate and biodegradable reaction products are consumed by bacteria. The full-scale installation with 3 streets of 4 Trojan Swift 16L30 reactors has been in operation since October 2004. Disinfection and organic contaminant control are as expected.  相似文献   

18.
Olive oil production results in important quantities of wastewater containing large amounts of total solids and organic carbon as well as low oil concentrations. This paper describes the treatment of olive mill wastewater (OMW) by combining an ultrafiltration (UF) technique and an advanced oxidation process (AOP) using UV/H2O2. It further demonstrates the technical feasibility of this compact and stable process to remove a large part of total solids and organic carbon. Indeed, OF reduces the pollutants contained in the OMW with an apparent rejection coefficient RCOD in the range of 94%. The UV/H2O2 oxidation process may be easily used, in combination with UF, to finish the treatment of the permeate. The results obtained in batch and continuous mode showed that this technique offered a treated solution which complies with legal requirements. A final concentration of 17 mgTOC dm−3 was obtained, which corresponds to a final COD of 52 mg dm−3, while the legal requirement is 125. Furthermore, the final effluent is fully decolorized.  相似文献   

19.
This laboratory study demonstrated the effectiveness of UV-H2O2 on the disinfection of water contaminated with microorganisms and organic matter. It was shown that UV-H2O2 has a higher efficiency than UV or hydrogen peroxide treatments applied alone. Performances were evaluated via microbiological and chemical parameters analyzed on both, water and biofilms (ATP, culturable and total bacteria, DOC and TOC). The optimization phases of the treatment confirmed a bacterial adaptation to H2O2 when applied alone. This adaptation was not observed in the case of UV-H2O2.  相似文献   

20.
The oxidation of the herbicide atrazine by advanced oxidation processes (AOP) has been studied. The experiments were carried out in a tubular photoreactor, 2.5 L capacity, capable of providing good contact between the liquid and gas reactants. The decomposition rate of atrazine was determined at different pH using UV radiation, Hydrogen Peroxide, Ozone, Ozone/UV, Ozone/H2O2, H2O2/UV and Ozone/H2O2/UV processes. The effect of three different pH values was studied (4.7, 6.8, 11.7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号