首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of biodegradable polylactide‐based polyurethanes (PLAUs) were synthesized using PLA diol (Mn = 3200) as soft segment, 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI) as hard segment, and 1,4‐butanediol as chain extender. The structures and properties of these PLAUs were studied using infrared spectroscopy, differential scanning calorimetry, tensile testing, and thermomechanical analysis. Among them, the MDI‐based PLAU has the highest Tg, maximum tensile strength, and restoration force, the TDI‐based PLAU has the lowest Tg, and the IPDI‐based PLAU has the highest tensile modulus and elongation at break. They are all amorphous. The shape recovery of the three PLAUs is almost complete in a tensile elongation of 150% or a twofold compression. They can keep their temporary shape easily at room temperature (20 °C). More importantly, they can deform and recover at a temperature below their Tg values. Therefore, by selecting the appropriate hard segment and adjusting the ratio of hard to soft segments, they can meet different practical demands for shape memory medical devices. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Polyether(bisurethane‐bisurea‐bisamide)s (PEUUA) based on poly(tetramethylene oxide) (PTMO) were synthesized by chain extension of PTMO endcapped with a diisocyanate (DI), and a diamine–diamide extender. The prepolymers were PTMOs with molecular weights between 1270 and 2200 g mol?1, either endcapped with 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (2,4‐TDI), or 1,6‐hexane diisocyante (HDI) and with a low content of free diisocyanate (<0.1 wt %). The diamine–diamide (6A6) extender was based on hexamethylene diamine (6) and adipic acid (A). In this way, segmented polyurethanes with monodisperse rigid segments (DI‐6A6‐DI) were obtained. The PEUUAs were characterized by DSC as well as temperature‐dependent FTIR and DMTA. The mechanical properties of the polymers were evaluated by compression set and tensile test measurements. The polyurethanes with monodisperse rigid segments displayed low glass transition temperatures, almost temperature‐independent rubbery plateaus and sharp melting temperatures. The crystallinities of the hard segments were 70–80% upon heating and 40–60% upon cooling. The rate of crystallization was moderately fast as the supercooling (Tm ? Tc) was in the order 36–54°C. The polyurethanes based on HDI had a much higher rubber modulus as compared to the MDI and 2,4‐TDI‐based polymers, because of a higher degree of crystallinity and/or a higher aspect ratio of the crystallites. The HDI residues are flexible and not sterically hindered and could therefore be more easily packed than MDI or 2,4‐TDI residues. Polyurethanes with monodisperse DI‐6A6‐DI hard segments have interesting properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
New poly(azomethine urethane)s were synthesized in the conventional literature manner by reacting a new bisphenol‐containing azomethine group, N,N′‐bis(4‐hydroxyl‐3‐methoxy benzylidine)‐2,6‐diaminopyridine (I) with various diisocyanates, such as hexamethylene diisocyanate (HDI) (a), methylene‐4,4′‐diphenyl diisocyanate (MDI) (b), and toluene‐2,4‐diisocyanate (TDI) (c). The resulting polymers I(a–c) were confirmed by 1H‐NMR, FTIR, UV, and CHN analyses. Thermogravimetric analysis (TGA) revealed that the polymers have high thermal stability. A semicrystalline behavior was noticed for polymers by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1198–1204, 2006  相似文献   

4.
Shape memory polyurethanes (SMPUs) have generated great attention because of their unique properties. These properties are result of a particular molecular structure consisting of flexible molecular chains with low glass transition temperatures alternating with hard urethane segments. In this field, bisphenol A (BA) has been used for a long time as chain extender due to the good properties of the obtained SPMU materials. Nevertheless, the high toxicity of this compound has caused a high decrease on its use. For this reason, it has been selected a lower toxicity compound, bisphenol A ethoxylate (BAE). In this work, it is described a new SMPUs based on BAE and the influence of the hard segment on the thermo-mechanical properties and shape memory capacity. For that, both the proportion of the components and the diisocyanate employed (2,4-toluene diisocyanate (TDI), 4,4′-methylene bis(phenylisocyanate) (MDI) or a TDI/MDI mixture) have been modified. Then, depending on the molecular architecture achieved, the polyurethanes present different properties, which were studied by different techniques, such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic-mechanical thermal analysis (DMTA). It has been observed that glass transition temperature (Tg) increases as the hard phase content in the PU samples increases. In addition, Tg-MDI > Tg-MDI-TDI > Tg-TDI, so it is possible to control the Tg of the material, that is, shape memory transition temperature varying the diisocyanate. Finally, the shape memory capacity of the PUs was evaluated by thermo-mechanical analysis (TMA). All the synthesized PUs have shown good shape memory effect with fixation ratios up to 80% and recovery ratios close to 100%.  相似文献   

5.
A series of thermoplastic poly(imide‐urethane)s (TPIUs), based on 4,4′‐diphenylmethane diisocyanate (MDI) and pyromellitic anhydride (PMDA) as hard segments and poly(tetrahydrofuran) (PTMG) as soft segments, has been prepared by a two‐step polymerization process. The objective of this study is to prepare a type of intrinsically flame‐retardant polyurethane by incorporating PMDA as a flame retardant in the main chains. The thermal behavior and flame retardancies of the TPIUs have been characterized by thermal gravimetric (TG) analysis and limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter tests. The results indicate that the TPIUs display outstanding performance. The temperature at 5% mass loss (T5%) and LOI value increase with the hard‐segment contents, while the total heat released (THR) and peak heat release rate (p‐HRR) show the opposite trend. Furthermore, the T5% of TPIU211 (molar ratio: MDI : PTMG : PMDA = 2 : 1 : 1) is 33.2°C higher than that of the conventional thermoplastic polyurethane TPU211 (molar ratio: MDI : PTMG : 1,4‐butanediol = 2 : 1 : 1), and the THR and p‐HRR of TPIU211 are 14.62% and 64.02% lower than the respective parameters of TPU211. In addition, UL‐94 vertical burning tests show that the TPIUs exhibit excellent antidripping effects. The ultimate tensile strengths of the TPIUs reached 23.1?37.6 MPa with increasing hard segment contents, which meets the requirement of mechanical properties with regard to practical use. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40801.  相似文献   

6.
Isocyanate‐terminated polyethylenes (PE), PE‐MDI and PE‐PMDI, were synthesized by reacting polyethylene monoalcohol (PEA) with 4,4′‐methylenediphenyl diisocyanate (MDI) and polymeric methylene diphenyl diisocyanate (PMDI), respectively. Effects of PEA, PE–MDI, and PE–PMDI on the mechanical properties and water resistance of wood–PE composites were investigated. All three compatibilizers increased the strength of the wood–PE composites. Composites containing PE–MDI or PE–PMDI exhibited a higher modulus of rupture (MOR) than those with PEA. The addition of PE–MDI and PE–PMDI decreased the water uptake rate of the composites while PEA increased this rate. The superior compatibilization effects of PE–MDI and PE–PMDI were attributed to the formation of covalent bonding between isocyanate and wood. This covalent bonding was demonstrated by the FTIR spectra of the wood residues after a p‐xylene extraction. Scanning electron microscope (SEM) images revealed that isocyanate‐terminated PE samples improved the interfacial adhesion between wood and PE. POLYM. ENG. SCI., 46:108–113, 2006. © 2005 Society of Plastics Engineers  相似文献   

7.
Thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized through the polyaddition reaction of 2,4‐toluene diisocyanate (2,4‐TDI), 4,4′‐diphenylmethane diisocyanate (MDI), or o‐toluidine diisocyanate (ODI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl, and the effect of the structures of the diisocyanates on the properties of LCPUs were investigated. Intrinsic viscosities of the polymers were in the range of 0.23–0.30 dL/g. Mesomorphic behavior of the polyurethanes were investigated by differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray scattering. Different mesomorphic behaviors were observed according to the different structural characteristics of diisocyanates. Polyurethanes employing 2,4‐TDI and MDI exhibited monotropic behaviors, while that with ODI showed enantiotropic behavior. POLYM. ENG. SCI., 47:439–446, 2007. © 2007 Society of Plastics Engineers.  相似文献   

8.
This article demonstrates a comparative investigation about the effect of diisocyanate on pyridine containing shape memory polyurethanes (Py‐SMPUs), which are synthesized with N,N‐bis(2‐hydroxylethyl)isonicotinamide (BINA) and four different diisocyanates: 1,6‐hexanediisocyante (HDI), isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), and tolylene diisocyanate (TDI). Results show that all BINA–SMPU systems have amorphous reversible phase. Comparatively, the MDI–BINA and TDI–BINA systems show higher Tg; and the HDI–BINA and IPDI–BINA systems show better thermal stability. In addition, the HDI–BINA and the IPDI–BINA systems exhibit good thermal‐induced shape memory effect and good moisture‐sensitive shape memory effect due to their better moisture absorption properties. Particularly, the HDI–BINA system has better response speed and better shape recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40721.  相似文献   

9.
Polyurethanes were synthesized from polyester and butanediol with three different diisocyanates, i.e., 4,4´-diphenylmethane diisocyanate (MDI), m-xylene diisocyanate (XDI), and 2,4-toluene diiscynate (TDI). The effect of chemical structures of diisocyate compounds on the degree of crystallinity and the thermal stability were observed. Differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) were used to determine the degree of crystallinity of the hard segment. The thermal degradation of polyurethanes was studied by the thermogravimetric method. It has been shown that the polyurethane hard-segment crystallinity decreases in the following order: MDI> XDI> TDI>. The experimental results also indicated that polyurethanes with aralkyl diisocyanates, i.e., XDI, had the best thermal stability. The polyurethanes synthesized from aromatic diisocyanates, i.e., MDI and TDI, had worse thermal stability than from XDI. However, owing to the higher degree of hard-segment crystallinity for polyurethanes from MDI, these polyurethanes had a better thermal stability than those based on TDI. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The third‐order optical nonlinearities and time responses of three new polymeric materials, which were prepared by polymerization of benzoguanamine (BGA) and pyromellitic dianhydride (PMDA), m,m′‐diaminobenzophenone (m,m′‐DABP) and PMDA, BGA, and 2,4‐tolylenediisocyanate (TDI) under microwave radiation, were measured by a picosecond forward three‐dimensional degenerate four‐wave mixing technique. The experimental results showed that nonresonant optical nonlinearity [χ(3)] of the three polymers is larger by microwave than by heating and that third‐order optical nonlinearities were not only affected by the length of polymer chain, but also by the polymer chain structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1739–1747, 2003  相似文献   

11.
The dynamic mechanical properties of thermoplastic urethane elastomers have been compared for materials based on different diisocyanate structures, either 4,4′-diphenylmethane diisocyanate (MDI) or an isomeric ratio of tolylene diisocyanate (TDI). Two comparable series of polymers were prepared with a polycaprolactone diol as the soft segment and varying concentrations of hard segments based on the respective diisocyanates and 1,4-butanediol. Over the composition range studied, the polymer glass transition temperatures increased for the TDI-based polyurethanes, but remained relatively constant for the series containing MDI. Differences in the degree of macroscopic order within the hard segments, due to variations in the symmetry of the diisocyanate structures, are suggested as an explanation of these dynamic mechanical properties.  相似文献   

12.
Water‐borne poly(urethane‐urea)s (WBPUs) were prepared by a prepolymer mixing process using aromatic diisocyanate (MDI, 4,4′‐diphenylmethane diisocyanate)/aliphatic diisocyanate (H12MDI, 4,4′‐methylenebis cyclohexyl isocyanate), polypropylene glycol (PPG, Mn = 1000), dimethylol propionic acid, and ethylene diamine as a chain extender, and triethylamine as a neutralizing agent. The effect of MDI on the molecular weight, chemical structure, dynamic thermo, and tensile properties of WBPUs was investigated. The yellowness index (YI, photo‐oxidation behavior) change of WBPUs under accelerated weathering exposure was also investigated. The WBPUs containing higher MDI content showed lower molecular weight, which verified the participation of some high reactive isocyanate groups of MDI into side reaction instead of chain growing reaction. As the MDI content increased, the storage modulus and tensile modulus/strength of WBPUs film increased, and their glass transitions of soft segments (Tgs) and hard segments (Tgh) were shifted to higher temperature. The intensity of tan δ peak of all three samples increased with increasing radiant exposure. The YI of H12MDI‐based WBPU sample (WBPU‐0) was not occurred. The YI of WBPUs containing MDI increased with increasing MDI content and radiant exposure. However, the YI of sample WBPU‐25 containing 25 mol % of MDI at 11.3 MJ/m2 (radiant exposure) was 6.6 which is a permissible level for exterior applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A number of aqueous polyurethane dispersions based on polytetramethylene glycol (PTMG), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and diisocyanates of differing structures such as toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate (H12MDI) were prepared. IR Spectroscopy was used to check the end of polymerization reaction and also the polymer characterization. The effects of diisocyanate structure on the particle size, contact angle, mechanical and thermal properties of the emulsion-cast films were studied. Average particle size of prepared polyurethane emulsions change by different diisocyanate based polyurethane. TDI based PU shows higher average particle size and contact angle than the others. Tensile strength, hardness, and elongation at break were higher in the case of MDI based polyurethane. Thermal property and thermal stability is also affected by variation of diisocyanate molecular structure.  相似文献   

14.
A series of blocked diisocyanates has been synthesized from toluene diisocyante (TDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4′‐diphenylmethane diisocyanate (MDI) and 2‐butoxyethanol. The synthesis of blocked diisocyanate adducts was confirmed by Fourier transform infrared, 1H NMR, electron impact mass spectrometry and nitrogen analysis. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and carbon dioxide evolution were used to determine the minimum de‐blocking temperatures. De‐blocking temperatures determined by these three techniques were found to be in the order DSC > TGA > CO2 evolution. The effect of different metal catalysts on thermal de‐blocking reaction of the blocked diisocyanates was studied, using the carbon dioxide evolution method. It was found that iron(III) oxide has the maximum catalytic activity on de‐blocking. The solubility of the blocked diisocyanate adducts was determined in different solvents. The study revealed that at 30 °C blocked IPDI and HDI adducts show better solubility than adducts based on TDI and MDI. Isocyanate‐terminated prepolymers of blocked diisocyanates and hydroxyl‐terminated polybutadiene (HTPB) were prepared. The storage stability and gelation times of the prepolymers were studied. Results showed that all the diisocyanate‐HTPB compositions are stable at 50 °C for more than three months. However, aliphatic diisocyanate‐HTPB compositions require greater gelation time than aromatic diisocyanate‐HTPB compositions at their respective de‐blocking temperatures. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
Stress–strain and stress–relaxation behavior of polyurethane elastomers based on poly(ethylene adipate), poly(ethylene maleate), polyethylene glycol, and 4,4′-diphenylmethane diisocyanate (MDI) have been studied. The elastomers were crosslinked by an excess of MDI and by dicumyl peroxide (DiCup); the latter was supposed to form additional crosslinks on the unsaturated bonds. The determined values of Young's modulus, Mooney-Rivlin elastic parameters C1 and C2, relaxation moduli E(10 sec) and E(100 sec), as well as relaxation speed were used to estimate the effect of MDI- and DiCup-formed crosslinks on the mechanical behavior of polyurethanes. It was found that while the elastomers crosslinked by MDI only apparently displayed viscoelastic properties, the polyurethanes additionally crosslinked by DiCup exhibited more elastic behavior. The results obtained were explained on the basis of changes in the amount of secondary bonding due to the additional network junctions formed by DiCup at nonpolar groups.  相似文献   

16.
以聚己二酸乙二醇聚酯二醇(PFA)、4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为原料合成纤维级热塑性聚氨酯,研究了低聚物分子质量、硬段含量、反应温度以及物料含水量对热塑性聚氨酯(TPU)性能的影响,得出了三颈瓶法合成纤维级TPU的最佳配方和合适的反应条件。  相似文献   

17.
以聚碳酸酯二元醇(PCDL)为软段,分别以异氟尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、六亚基二异氰酸酯(HDI)为硬段,采用丙酮法制备了四种不同硬段组成的PCDL型水性聚氨酯(WPU).综合对比,研究了硬段类型对PCDL型WPU结构与性能的影响.结果表明,芳香族WPU的力学...  相似文献   

18.
Segmented polyurethane (PU) films from castor-oil-based PU prepolymer with different hard-segment compositions and nitrolignin (NL) were synthesized. Diisocyanates (DIs), such as 2,4-tolylene DI (TDI) and 4,4′-diphenylmethane DI (MDI), 1,4-butanediol (BDO) as a chain extender, and trimethanol propane (TMP) as a crosslinker were used to obtain PU films containing NL (UL) which were named as UL–TB for TDI and BDO, UL–TT for TDI and TMP, UL–MB for MDI and BDO, and UL–MT for MDI and TMP, respectively. The mechanical properties and thermal stability of the films were characterized by a tensile test and thermogravimetric analysis, respectively. The MDI-based UL films exhibited a higher tensile strength (σb) and thermal stability than TDI-based UL. However, the recoverability of the TDI-based UL films was better than that of others. The UL films with TMP (UL–TT and UL–MT) had higher σb and lower breaking elongation (ϵb) than the UL films with BDO (UL–TB and UL–MB), caused by enhancement in the crosslinking network of hard segments and microphase separation between soft and hard segments. The values of σb and ϵb of the UL films that contained NL were much higher than those of the PU films, which indicates that the introduction of NL increased the interaction between hard segments by crosslinking. The hydrogen bonding in the UL films was studied by infrared spectroscopy, which indicated that MDI favored the formation of hydrogen bonds, especially in the ordered domain. Differential scanning calorimetry, dynamic mechanical analysis, and wide-angle X-ray diffraction indicated that the UL films were compatible as a whole, but microphase separation existed between soft and hard segments and significantly affected the mechanical properties. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3251–3259, 2001  相似文献   

19.
Side reactions of isocyanate groups in N,N-dimethylacetamide (DMAC) were studied. Although 4,4′-diphenylmethane diisocyanate (MDI) in DMAC was stable and no changes occurred at 3°C, the isocyanate content decreased and a gel was finally formed at 40°C. Using phenyl isocyanate (PI) as a model compound of MDI, the identification of PI side-reaction products in DMAC were studied. From these experiments, the following five products were identified; (1) 1,3-diphenylurea (DPU), (2) 1,3-diphenyl-5-phenylcarbamyl-6-dimethylaminouracil (PUR), (3) 1,3,5-triphenylbiuret (TPB), (4) triphenyl-s-triazine-2,4,6-trione (TTT), and (5) 1,1-dimethyl-3-phenylurea (DMPU). Among these identified products, the novel side reaction product PUR, which was formed between PI and DMAC as solvent, was found along with TPB and TTT, which were already known to cause three-dimensional network formation.  相似文献   

20.
A polyimide (PI) based on benzophenone‐3,3′,4,4′‐tetracarboxylic acid dianhydride, toluene diisocyanate (TDI), and 4,4′‐methylenebis (phenyl isocyanate) (MDI) has been synthesized via a one‐step polycondensation procedure. The resulting PI possessed excellent thermal stability with the glass transition temperature (Tg) 316°C, the 5% weight loss temperature (T5%) in air and nitrogen 440.4°C and 448.0°C, respectively. The pyrolysis behaviors were investigated with dynamic thermogravimetric analysis (TGA), TGA coupled with Fourier transform infrared spectrometry (TGA–FTIR) and TGA coupled with mass spectrometry (TGA–MS) under air atmosphere. The results of TGA–FTIR and TGA–MS indicated that the main decomposition products were carbon dioxide (CO2), carbonic oxide (CO), water (H2O), ammonia (NH3), nitric oxide (NO), hydrogen cyanide (HCN), benzene (C6H6), and compounds containing NH2, C?N, N?C?O or phenyl groups. The activation energy (Ea) of the solid‐state process was estimated using Ozawa–Flynn–Wall (OFW) method which resulted to be 143.8 and 87.8 kJ/mol for the first and second stage. The pre‐exponential factor (A) and empirical order of decomposition (n) were determined by Friedman method. The activation energies of different mechanism models were calculated from Coats–Redfern method. Compared with the activation energy values obtained from the OFW method, the actual reaction followed a random nucleation mechanism with the integral form g(α) = ?ln(1 ? α). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40163.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号