首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
CO2驱替煤层CH4试验研究   总被引:5,自引:1,他引:4  
 通过对大煤样试件(100 mm×100 mm×200 mm)进行注CO2驱替煤层CH4试验,较真实地模拟在煤层中储存CO2以及驱替开采煤层气的过程。研究发现:CH4在煤体中渗透率与体积应力呈负指数相关规律;煤体对CO2的渗透率高于对CH4气体的渗透率2个数量级以上;随体积应力及驱替压力的不同,单位体积煤体可储存17.47~28.00体积CO2,CO2/CH4置换体积比可达7.03~13.91;在恒定体积应力及驱替压力条件下,CO2注入、CH4置换、产出均能够平稳进行;2种不同煤层CH4含量条件与驱替置换方式下,产出气体中初期CH4含量高达20%~50%,随时间延续产出气体中CH4含量有所下降,但仍能持续保持在10%~16%;驱替压力、驱替速度、注入倍数、煤层CH4含量、储层结构及其渗透性等因素共同决定着CO2/CH4驱替置换效果;在CO2注入煤体进行置换吸附期间,受气体吸附解吸、煤基质自身变形等因素影响,煤体会发生膨胀现象。该研究成果对CO2煤层处置及驱替置换开采煤层气实践具有重要理论意义与指导价值。  相似文献   

2.
含不同气体煤岩全应力-应变渗透特性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分别以吸附性气体甲烷(CH4)、二氧化碳(CO2)和“非吸附性”气体氦气(He)为渗流介质,在三轴伺服渗流装置上进行了含不同气体煤岩全应力-应变加载过程煤岩渗透特性的研究。试验结果表明:三种气体的渗透率-应变曲线变化趋势相近,其相对应力-应变曲线变化有明显滞后性,吸附性气体的滞后性表现较为明显;在弹性到屈服点阶段和应变软化阶段,煤样渗透率与有效应力呈负指数关系;煤样对不同吸附能力的气体,其渗透率之间存在明显差异性;对煤样进行饱和吸附后,二氧化碳和甲烷所测渗透率较之氦气测得的(视为煤样绝对渗透率)平均减小了55%,且二氧化碳所测渗透率小于甲烷。  相似文献   

3.
《Planning》2015,(17)
针对煤吸附/解吸气体过程中变形随时间变化的力学行为,对煤体孔隙度方程的隐函数求导,将具有时变性的孔隙度方程引入有效应力系数中,由此建立煤吸附/解吸气体变形问题的力学模型。模型的数值计算结果表明:煤样吸附/解吸气体产生膨胀/收缩变形,变形随时间的增加而增大,直到气体在煤中吸附/解吸达到平衡,煤样的变形才稳定不变;气体压力对煤样的吸附/解吸变形平衡时间及平衡变形量产生影响,气体压力越大,吸附/解吸变形平衡所用的时间越短,平衡时煤样体积应变越大;煤样吸附变形与气体吸附性相关,吸附性更强的CO2气体比CH4气体促使煤样产生更大的膨胀变形。模拟结果与以往实验研究结论一致,证明建立的力学模型能反映煤吸附/解吸气体的变形特征。  相似文献   

4.
 利用自主研发的含瓦斯煤热流固耦合三轴伺服渗流装置,开展不同有效围压条件下分别充CH4与CO2气体时原煤的渗透率与孔隙压力之间关系的试验研究,以探讨在低孔隙压力的环境下,煤岩渗透率对孔隙压力变化响应的敏感性。研究结果表明:(1) 在低孔隙压力的环境下,煤岩渗透率随孔隙压力的增加呈幂函数递减趋势,其过程可分为渗透率加速变化阶段和稳定变化阶段;(2) 相同孔隙压力、有效围压条件下,充CH4气体的煤岩渗透率高于充CO2时的煤岩渗透率;(3) 采用渗透率变化率Dp以及孔隙压力敏感性系数Cp评价渗透率对孔隙压力的敏感性,得出孔隙压力小于1.0 MPa时,煤岩渗透率对孔隙压力的响应程度较为显著,并基于Cp推导出煤岩渗透率与孔隙压力的函数关系式。  相似文献   

5.
为模拟瓦斯抽采过程中温度与孔隙压力对煤岩吸附及渗透特性的影响,利用等温吸附装置、含瓦斯煤热–流–固耦合三轴伺服渗流装置,开展等温吸附试验及不同温度下孔隙压力降低的渗流试验。建立修正的双L吸附模型和考虑温度–孔隙压力耦合作用的煤岩渗透率模型。通过试验结果及试验比对验证其合理性。结果表明:在本文试验条件下,煤岩瓦斯累积解吸量随瓦斯压力降低呈逐渐升高趋势。当温度恒定时,煤岩渗透率在降压过程中呈先降低后升高的趋势。当孔隙压力恒定时,煤岩渗透率在升温过程中呈先降低后升高的趋势。修正后的双L吸附模型比原吸附模型拟合效果更好,能很好反映不同温度下煤岩吸附量与气体压力的变化关系。煤岩瓦斯解吸过程中产生的基质收缩应变随孔隙压力降低而升高。新建渗透率模型与试验数据具有较好的一致性,可以更好的表征不同温度条件下的煤岩渗透率演化规律。  相似文献   

6.
 为了解水力化钻孔周围煤体瓦斯径向渗流特性,利用自行研制的径向瓦斯渗流试验系统,对青东煤矿突出煤层试样,进行干燥煤样、液态水润湿煤样、吸附瓦斯后高压注水煤样的等温解吸及径向稳态渗流试验。结果表明:(1) 相同平衡压力下,高压注水煤样等温吸附量高于干燥煤样,均显著高于液态水润湿煤样的吸附量。(2) 随含水率增加液态水润湿煤样等温吸附量逐渐降低,呈对数函数关系,得出各系数随吸附压力变化的拟合函数。(3) 相同覆压下,高压注水煤样瓦斯渗透率显著高于干燥煤样渗透率,液态水润湿煤样渗透率略低于干燥煤样渗透率;且液态水润湿煤渗透率随含水率增加而降低,在低瓦斯压力阶段尤为显著。根据试验结果分析水分对径向瓦斯渗流特性的影响机制,并指出水力化钻孔径向瓦斯流动经过原始解吸渗流区、压力水抑制解吸渗流区、液态水自然润湿解吸渗流区3个区域。  相似文献   

7.
单轴应力–温度作用下煤中吸附瓦斯解吸特征   总被引:3,自引:0,他引:3  
 利用自主研发的深部煤岩温度–压力耦合瓦斯解吸试验系统,对鹤岗南山矿煤样进行单轴应力–温度作用下吸附瓦斯运移过程。该试验系统通过对煤样施加不同应力和温度,促使煤中原生吸附瓦斯解吸,模拟煤体变形中吸附瓦斯解吸–释放过程。试验中分别在恒温和升温条件下对煤样依次进行单轴破坏和施加围压,实时监测逸出气体压力、流量,抽样检测气体成分和浓度。研究结果表明煤体在单轴压缩破坏过程中出现气体逸出压力降低导致气体回流现象;对破裂煤样施加围压后短时间内排出大量高浓度气体。试验结果证实温度升高是诱发煤样中吸附瓦斯大量解吸因素之一,而煤体内是否存在大量贯通裂隙是影响瓦斯运移的重要因素。  相似文献   

8.
考虑温度影响下煤层气解吸渗流规律试验研究   总被引:9,自引:0,他引:9  
通过不同温度条件下煤层气渗透率、渗流量测定的试验,研究了温度条件下煤层气渗透率、渗流量的影响因素,得到考虑温度情况下的煤层气解吸渗流规律。利用三维应力条件下煤样吸附解吸试验系统,在三轴渗透仪中加入温度控制系统,测定煤样在温度、围压、轴压和孔隙压力的不同组合情况下的渗透率和渗流量。结果表明,在相同围压、轴压和孔隙压力情况下,煤样渗透率随温度的增加而减少;不同温度条件下,渗透率随孔隙压力的增加均以指数形式递增。在相同围压、轴压和孔隙压力情况下,等温解吸时,煤样渗流量随温度的增加而减少;升温解吸时,煤样20℃吸附、升温至40℃解吸时渗流量比20℃吸附、20℃解吸时明显增加;等温或升温情况下,渗流量随孔隙压力增加均呈现非线性递增关系。这一规律对煤层气热采方式的选择具有重要指导意义。  相似文献   

9.
不同性质煤的微观特性及渗透特性对比试验研究   总被引:2,自引:1,他引:1  
 对从典型矿井取得的不同性质煤,分别进行微观特性和瓦斯渗透特性试验。结果表明:突出煤的比表面积和吸附/解吸能力明显高于延期突出煤和非突出煤,延期突出煤介于二者之间。突出煤吸附能力强,解吸速度相对也较快,可能形成较高的气体压力,对煤岩的破坏性增强。非突出煤的渗透率明显高于突出煤和延期突出煤的渗透率,相差最大处超过4倍以上,煤的渗透特性好,瓦斯就较易在煤层中运移,煤层的储气条件差,瓦斯更容易从煤层中脱离出来,反之则会增加突出危险性。说明渗透特性是考察煤层是否具有突出危险性的一个重要指标。总之,煤的渗透特性和微观特性是密切相关的,吸附/解吸特性能力强,煤的渗透特性相对较差,强度较低,较易发生破坏,突出危险性较大。  相似文献   

10.
《Planning》2013,(5)
利用自主设计的页岩中气体吸附解吸实验装置,在不同温度和压力条件下研究CO2在不同页岩中的吸附解吸性能。结果表明:CO2在页岩上的等温吸附曲线属于典型的Ⅰ型等温曲线,可采用Langmuir模型对吸附及解吸数据进行拟合;相同温度下,CO2在页岩中的吸附量随着压力的升高而增大;相同压力下,CO2在页岩中的吸附量随着温度的升高而减小;相同温度压力条件下,CO2解吸过程中存在解吸滞后现象,且解吸附曲线表征的最大吸附能力低于吸附曲线表征的最大吸附能力;CO2在页岩上最大吸附量随有机碳含量增加而增大,随石英含量增加而减小。  相似文献   

11.
煤岩吸附量–变形–渗透系数同时测量方法研究   总被引:1,自引:0,他引:1  
 近年来,随着人们对CO2煤层封存、煤层气注气开采等技术关注程度的不断提高,大量学者开始煤岩吸附量、变形以及渗透系数测量方面的研究,并开发大量测试装置和技术。但是,要在一个试样上同时测量吸附量、变形和渗透系数比较困难,目前还没有相关试验方法和试验装置的报道。提出煤岩吸附量–变形–渗透系数同时测量方法并开发试验装置。采用圆柱形块煤作为试验样品,利用变形传感器测定吸附引起的变形,利用双计量泵测定吸附量和渗透系数。介绍该方法的原理、试验装置及试验流程,并利用该方法和装置进行煤岩对CO2气体的吸附量、变形和渗透系数同时测量试验。试验结果表明,该方法和装置能够同时测量煤岩吸附量、变形和渗透系数,试验效果良好。  相似文献   

12.
 为探索地球物理场中原地煤层气运移能力对煤层气储集和富集能力的影响,以地应力场、地温场中煤层气连续性方程、气体状态方程、吸附方程、渗流方程为基础,建立了应力、温度影响下的煤层气渗流控制方程。方程体现了地应力和地温对煤层气压力、含量、渗透率和孔隙率的影响,其中,应力和温度通过影响煤层气压力影响吸附量,通过影响煤层气压力和孔隙率影响游离量;温度还通过影响吸附常数b影响吸附量;不同的应力、温度组合条件下,渗透率的变化机制不同。通过Kaiser声发射原岩应力测试实验、不同温度下煤的甲烷等温吸附实验、不同温度及有效应力下煤体中甲烷渗流实验以及煤的孔隙率、工业分析等实验,研究应力、温度影响下的煤层气渗流特征。不同温度下煤的甲烷等温吸附实验表明,吸附常数a随温度变化不明显,b随温度升高而下降;不同温度、不同有效应力条件下煤的甲烷渗流实验表明,小有效应力条件下,煤体中甲烷渗透率随温度升高而升高;大有效应力条件下,渗透率随温度升高而下降。以实验数据和原始地质资料为基础,采用有限差分法,进行了地球物理场中原地煤层气渗流运移能力的一维、二维数值模拟。计算表明:研究区现今原地煤层气渗流运移导致的煤层气散失甚微,低渗煤层具有良好的储集和富集能力,但不利于后期开采,卸除地应力和升高温度是提高煤层气抽采率的有效途径。  相似文献   

13.
低频振动对煤样解吸特性的影响   总被引:1,自引:0,他引:1  
 为研究低频振动对煤样解吸瓦斯性能的影响,研制瓦斯吸附解吸激振与测试系统。试验结果表明,在低频振动作用下,随着频率降低,解吸量和解吸速度增大,衰减速度越快;煤样瓦斯的解吸强度、衰减系数随时间变化逐渐减小。采用瓦斯解吸速度和振动理论的相关知识分析试验结果,认为低频扰动会导致煤的孔隙性减弱、渗透率降低、扩散速率减慢,不利于瓦斯分子的解吸。扰动作用下,吸附伴生分子虽然获得脱附能,但由于扩散速率的减慢,解吸速度很慢,解吸量小;无扰动作用时,煤样原有的孔隙性没有改变,虽然吸附伴生分子没有获得脱附能,然而由于渗透率较大,扩散速率相对较大,解吸速度相对有振动作用时反而较快,解吸量大。因此,低频振动使煤样的孔隙性减弱,增大分子的平均自由程,导致分子在煤样中扩散变慢,同时在运动层面上由于形成数层细小的孔隙层,增加煤样内部的吸附位,从而减缓瓦斯在煤样中的解吸。  相似文献   

14.
煤的变质程度、孔隙特征与渗透率关系的试验研究   总被引:1,自引:0,他引:1  
以贵州六盘水矿区中高变质程度的原煤为对象,利用TESCAN VEGA II型自带能谱扫描电镜、ASAP2020型比表面微孔分析仪,对煤样的内外部孔隙特征进行研究;借助自主研制的三轴渗流装置,进行不同瓦斯压力条件下含瓦斯型煤的三轴渗流试验。结果表明:(1) 煤的变质程度与内外部孔隙特征呈正相关关系,变质程度越高,原煤的分形维数越高,原煤的吸附量和孔容也越大;(2) 原煤的内外部孔隙特征与渗透率呈正相关关系,内外部孔隙越发育,渗透率越大;(3) 在恒定平均有效应力和温度条件下,随瓦斯压力的增大,渗透率先急剧降低,而后降低趋势渐缓,且渗透率与瓦斯压力服从指数分布关系。研究结果对贵州六盘水矿区瓦斯灾害的防治和煤层气的开发利用具有一定的理论指导意义。  相似文献   

15.
基于断裂力学和莫尔-库伦准则,建立了不同初始应力状态下CO2注入煤层后储层、盖层岩石破裂准则以及断层活化失稳判据,对封存系统地层稳定性进行了分析,提出了确定CO2临界注入压力的解析方法,并对影响CO2封存安全性的参数(Shmin/Sv、储层盖层岩石弹模、泊松比、断层倾角等)进行了敏感性分析。结果表明:在进行地层稳定性预测时,应充分考虑煤层初始应力状态、吸附引起的差异性膨胀效应以及储层岩石力学性质的影响。煤岩泊松比越小,储层滑动倾向性越小;当Shmin/Sv(最小水平主应力与垂直应力之比)接近于1时,断层滑动的风险大为降低。研究成果可以为不可采煤层CO2封存工程储层压力控制以及安全评价提供科学依据。  相似文献   

16.
 利用自主研发的含瓦斯煤岩热–流–固耦合三轴伺服渗流装置,以型煤试件为研究对象,进行不同温度和不同围压条件下煤层气储层渗透率演化规律的试验研究。研究煤层气在煤层气储层中的运移规律并采取相应的煤层气抽放措施,可以预防煤与瓦斯突出或者对煤层气储层中赋存的煤层气进行合理利用,对于矿井建设和实现煤与煤层气共采均具有重要的实际意义。试验结果表明:(1) 在不同试验条件下,煤岩三轴压缩试验过程中普遍存在着煤层气渗流速度变化滞后于应变和应力的现象,煤岩的体积最小点滞后量较大;(2) 煤岩的体积最小点滞后量和应力峰值点滞后量在温度越高的试验条件下呈减小趋势;(3) 煤岩所受围压通过压缩煤样侧壁,导致其内部结构变化而对煤岩的煤层气渗流速度起到阻碍作用,围压越大,体积最小点滞后量越大。  相似文献   

17.
复杂应力路径下含瓦斯煤渗透性变化规律研究   总被引:3,自引:1,他引:2  
 通过含瓦斯煤渗透特性试验研究,系统分析复杂应力路径下含瓦斯煤渗透性的变化规律,建立含瓦斯煤渗透率与轴向压力、围压、瓦斯压力、围压升降、全应力–应变过程等之间的定性与定量关系,深入探讨各种不同应力路径下含瓦斯煤渗透性的控制机制和变化规律。结果表明,应力路径对含瓦斯煤的渗透率有重要影响:(1) 含瓦斯煤渗透率随着轴向压力和围压的增大而减小,随瓦斯压力的增大而增大。(2) 含瓦斯煤渗透率与轴向压力、围压和瓦斯压力均呈指数关系变化。(3) 围压升、降过程中,含瓦斯煤渗透率会受到一定程度的损害,其损害程度可以用最大渗透率损害率和渗透率损害率来表征。同时,三维压缩条件下含瓦斯煤会发生二次密实效应。(4) 三轴压缩下全应力–应变试验过程中,含瓦斯煤的渗透率呈“V”字型变化趋势;渗透率随煤样的应变先减小后增大,然后达到最大值,并且渗透率的增幅小于其减幅。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号