首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
To accumulate phylogenetic information on the central histaminergic system, we investigated the histaminergic system in the brain of a teleost, the jack mackerel (Trachurus trachurus), using the indirect immunofluorescent method with antiserum against histamine. A small number of histamine-immunoreactive cell bodies were observed in the posterior hypothalamus around the posterior recess. Histamine-immunoreactive fibers innervated the telencephalon, diencephalon, tegmentum, and rostral part of the medulla oblongata. The immunoreactive fibers were very sparse or absent in the olfactory bulb, optic tectum, cerebellum, caudal part of the medulla oblongata, spinal cord, and hypophysis. Ascending fiber bundles were seen in the basal hypothalamus, supplying fiber collaterals to the telencephalon and diencephalon, whereas descending fibers were observed in the midline of the lower brainstem. These findings suggest that the central histaminergic system of the jack mackerel is homologous to those of mammals, reptiles, and amphibians, although poorly developed compared with them. The histamine-immunoreactive neuronal cell bodies found in the border area between the mesencephalon and rhombencephalon of the river lamprey were not detected in the brain of the jack mackerel.  相似文献   

2.
An antiserum against conjugated histamine was used to study the distribution of histaminergic neurons in the CNS of the lamprey Lampetra fluviatilis. Numerous histamine-immunoreactive cell bodies were detected in the dorsal and ventral hypothalamic nuclei and in the adjacent postinfundibular commissural nucleus. Histamine-immunoreactive fibers of high density were present in the ventral hypothalamus, and fibers could also be traced dorsally from the hypothalamus to the corpus striatum and septal nucleus where they appeared to terminate in dense plexuses. Another, smaller group of histamine-immunoreactive perikarya was observed in the border area between mesencephalon and rhombencephalon, near the caudal pole of the mesencephalic reticular nucleus. Sparsely distributed histamine-immunoreactive fibers were present in the ventral mesencephalon. The distribution of histaminergic neurons in cyclostomes, which diverged very early from the main vertebrate line, shows similarities with the corresponding systems in the CNS of amphibians and mammals, which suggests that histaminergic neuronal systems are phylogenetically old and have been conserved during evolution.  相似文献   

3.
The distribution of the histaminergic neuronal system in the brain of the clawed frog Xenopus laevis was mapped with an antiserum against carbodiimide-fixed histamine and compared to that in mammals. The histamine-immunoreactive cell bodies were located in a small area of the posterolateral hypothalamus, close to the dorsal infundibular nucleus, which contains catecholaminergic and serotonergic neurons. This area may be homologous to the tuberomammillary nucleus in mammals. A thick process extended from each cell between the ependymal cell layer and terminated in the ventricle lumen. The number of histaminergic cell bodies in adult Xenopus brain was relatively low, as compared with the mammalian brain. Preliminary analysis of adjacent sections stained with antisera against GABA or serotonin indicated that the histamine cells were not immunoreactive for these. The pathways and distribution of histaminergic fibers in Xenopus brain showed many similarities to mammals. The densest fiber networks were present in the medial basal forebrain, particularly in the medial amygdala and septum. A distinct cluster of fibers was concentrated around the cell bodies of nucleus accumbens. In most pallial areas, the density was moderate to low. In the primordial piriform cortex and the striatum, very few fibers were seen. In diencephalon, highest fiber densities were found in the anterior and ventral thalamus and posterior and lateral hypothalamus. In hindbrain, the density was highest in the medullary central gray, as in some mammals. The results suggest that the general pattern of the histaminergic system in vertebrate brain is conserved from amphibians to mammals.  相似文献   

4.
The comparative distribution of peptidergic neural systems in the brain of the euryhaline, viviparous teleost Poecilia latipinna (green molly) was examined by immunohistochemistry. Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas. Neurosecretory and hypophysiotrophic hormones were localized to specific groups of neurons mostly within the preoptic and tuberal hypothalamus, giving fibre projections to the neurohypophysis, ventral telencephalon, thalamus, and brain stem. Separate vasotocin (AVT)-ir and isotocin (IST)-ir cells were located in the nucleus preopticus (nPO), but many AVT-ir nPO neurons also displayed growth hormone-releasing factor (GRF)-like-ir, and in some animals corticotrophin-releasing factor (CRF)-like-ir. The main group of CRF-ir neurons was located in the nucleus recessus anterioris, where coexistence with galanin (GAL) was observed in some cells. Enkephalin (ENK)-like-ir was occasionally present in a few IST-ir cells of the nPO and was also found in small neurons in the posterior tuberal hypothalamus and in a cluster of large cells in the dorsal midbrain tegmentum. Thyrotrophin-releasing hormone (TRH)-ir cells were found near the rostromedial tip of the nucleus recessus lateralis. Gonadotrophin-releasing hormone (GnRH)-ir cells were present in the nucleus olfactoretinalis, ventral telencephalon, preoptic area, and dorsal midbrain tegmentum. Molluscan cardioexcitatory peptide (FMRF-amide)-ir was colocalized with GnRH-ir in the ganglion cells and central projections of the nervus terminalis. Melanin-concentrating hormone (MCH)-ir neurons were restricted to the tuberal hypothalamus, mostly within the nucleus lateralis tuberis pars lateralis, and somatostatin (SRIF)-ir neurons were numerous throughout the periventricular areas of the diencephalon. A further group of SRIF-ir neurons extending from the ventral telencephalon into the dorsal telencephalon pars centralis also contained neuropeptide Y (NPY)-, peptide YY (PYY)-, and NPY flanking peptide (PSW)-like-ir. These immunoreactivities were, however, also observed in non-SRIF-ir cells and fibres, particularly in the mesencephalon. Calcitonin gene-related peptide (CGRP)-like-ir had a characteristic distribution in cells grouped in the isthmal region and fibre tracts running forward into the hypothalamus, most strikingly into the inferior lobes. Antisera to cholecystokinin (CCK) and neurokinin A (NK) or substance P (SP) stained very extensive, separate systems throughout the brain, with cells most consistently seen in the ventral telencephalon and periventricular hypothalamus. Broadly similar, but much more restricted, distributions of cells and fibres were seen with antisera to neurotensin (NT) and vasoactive intestinal peptide (VIP).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40–45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ‐aminobutyric acid (GABA), and thyrotropin‐releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine‐enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine‐ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep–wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors. J. Comp. Neurol. 520:3827–3845, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
An immunohistochemical method that utilizes carbodiimide as a fixative and antisera directed against histamine was applied to investigate the location of histamine in the rat pineal complex. Numerous histamine-immunoreactive cell bodies were observed in different subdivisions of the tuberomammillary nucleus of the posterior hypothalamus, and a few cell bodies were present in the posterior and dorsal part of the periventricular hypothalamic nucleus. Histamine-immunoreactive fibers were observed to leave the posterior hypothalamus in various directions of which one dorsally projecting tract was followed in the periventricular area of the caudal diencephalon to the epithalamus. Several histamine-immunoreactive nerve fibers of this tract continued through the posterior commissure directly into the deep pineal gland. A few immunoreactive fibers were also observed in the habenular commissure. In midsagittal sections, histamine-immunoreactive nerve fibers were observed to enter the pineal stalk from the deep pineal gland. Most of histamine-immunoreactive fibers in the stalk continued towards the superficial pineal gland, but their number decreased in more distal locations of the stalk, indicating that some fibers terminate in the stalk as well. A few fibers were found to terminate in the most rostral part of the superficial pineal gland. The immunoreactive nerve fibers in the epithalamus and pineal complex were endowed with prominent varicosities. Taken together, these results indicate that histaminergic nerve fibers, originating from the posterior hypothalamus, project to the pineal complex of the rat. Histamine must therefore be considered a putative neurotransmitter contained in the central innervation of the pineal gland, but its function in pineal physiology has so far not been elucidated.  相似文献   

7.
Kisspeptin is a neuroendocrine hormone with a critical role in the activation of gonadotrophin‐releasing hormone (GnRH) neurones, which is vital for the onset of puberty in mammals. However, the functions of kisspeptin neurones in non‐mammalian vertebrates are not well understood. We have used transgenics to labell kisspeptin neurones (Kiss1 and Kiss2) with mCherry in zebrafish (Danio rerio). In kiss1:mCherry transgenic zebrafish, Kiss1 cells were located in the dorsomedial and ventromedial habenula, with their nerve fibres contributing to the fasciculus retroflexus and projecting to the ventral parts of the interpeduncular and raphe nuclei. In kiss2:mCherry zebrafish, Kiss2 cells were primarily located in the dorsal zone of the periventricular hypothalamus and, to a lesser extent, in the periventricular nucleus of the posterior tuberculum and the preoptic area. Kiss2 fibres formed a wide network projecting into the telencephalon, the mesencephalon, the hypothalamus and the pituitary. To study the relationship of kisspeptin neurones and GnRH3 neurones, these fish were crossed with gnrh3:EGFP zebrafish to obtain kiss1:mCherry/gnrh3:EGFP and kiss2:mCherry/gnrh3:EGFP double transgenic zebrafish. The GnRH3 fibres ascending to the habenula were closely associated with Kiss1 fibres projecting from the ventral habenula. On the other hand, GnRH3 fibres and Kiss2 fibres were adjacent but scarcely in contact with each other in the telencephalon and the hypothalamus. The Kiss2 and GnRH3 fibres in the ventral hypothalamus projected into the pituitary via the pituitary stalk. In the pituitary, Kiss2 fibres were directly in contact with GnRH3 fibres in the pars distalis. These results reveal the pattern of kisspeptin neurones and their connections with GnRH3 neurones in the brain, suggesting distinct mechanisms for Kiss1 and Kiss2 in regulating reproductive events in zebrafish.  相似文献   

8.
To accumulate phylogenetic information on the central histaminergic system, we investigated the histaminergic system in the brain of the Reeves turtle, Chinemys reevesii, using the indirect immunofluorescent method with antiserum against histamine. Histaminergic neuronal cell bodies were found exclusively in the posterior part of the ventral hypothalamus. Histaminergic varicose fibers innervated almost all parts of the turtle brain, but tended to be concentrated in several areas. Very dense innervation was observed in the medial part of the telencephalon, ventrolateral part of the hypothalamus, nucleus habenularis lateralis, and ventromedial part of the tegmentum. Medium density of innervation was seen in the olfactory bulb, nucleus medialis amygdalae, and tectum. Only a few fibers were detected in the lateral part of the telencephalon, dorsal part of the hypothalamus, thalamus, rhombencephalon, and spinal cord. The main ascending fibers were observed in the lateral part of the hypothalamus, sending dense fiber bundles to the cortices dorsomedialis and medialis and nucleus habenularis lateralis. Descending fibers appeared to run in the ventral tegmental area, passing through the dorsal and ventral parts of the midline of the brain stem to the spinal cord. These findings indicate that the general morphological features of the histaminergic system in the turtle brain are similar to those in the mammalian and frog brains.  相似文献   

9.
10.
The histaminergic system is involved in the control of arousal in the brain and may impact significantly on visual processing. However, little is known about the histaminergic innervation of visual areas, or the histamine system in the primate brain, in general. We examined in Macaca mulatta the location of histamine-immunoreactive neurons and the innervation of important cortical and subcortical visual areas by histamine-immunoreactive axons. Brain sections were treated with an antibody to histamine and processed with standard immunohistological procedures. Histamine-immunoreactive neurons (20–45 μm in diameter) were localized bilaterally in the hypothalamus, particularly in ventral, lateral, posterior, and perimammillary hypothalamic areas. These hypothalamic cells appear to provide the sole neural source of histamine in the macaque brain. A plexus of varicose histamine-immunoreactive axons was present throughout the superior colliculus, the dorsal and ventral lateral geniculate nuclei of the thalamus, the reticular nucleus of the thalamus, the lateral posterior/pulvinar complex, and the visual cortex, including areas 17, 18, and the nearby extrastriate cortex. The axons nearly homogeneously innervated every region and layer in these structures, except for an increase in density in layer 1 of the visual cortex and in the superficial-most layers of the superior colliculus. Histaminergic axons broadly innervated every visual region examined. In comparison with the other aminergic and the cholinergic projection systems, which show considerable projection specificity, the histaminergic projection exhibited great homogeneity. The breadth of the distribution of histaminergic axons ensures that virtually all levels of visual processing in the primate can be influenced, either directly or indirectly, by the neuromodulatory effects of histamine. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Histamine-immunoreactive nerve fibers in the mammalian spinal cord   总被引:1,自引:0,他引:1  
New sensitive antisera against histamine were used to study the distribution of histamine-immunoreactive nerve fibers in the spinal cord of several mammalian species. Tissues were fixed with carbodiimide by transcardiac perfusion or immersion. A few immunoreactive nerve fibers were found in the cervical spinal cord of the rat in the superficial laminae of the dorsal horn, around the central canal and scattered in the anterior horn. The density of immunoreactive fibers in the cervical spinal cord of the guinea pig and tree shrew was higher, but still low. The densest networks of histamine-immunoreactive fibers were seen in the cervical spinal cord of the pig. The laminar distribution of histamine-immunoreactive fibers was similar in all species. Histamine-immunoreactive fibers were densest in lamina X, followed by laminae I-II. Scattered fibers were also seen in the white matter in the lateral and posterior funiculus in the pig. In the rat and the guinea pig, no histamine-immunoreactive cell bodies were seen in the spinal sensory ganglia. The results suggest that the histamine-immunoreactive nerve fibers in the spinal cord may originate from the brain, probably from the posterior hypothalamus, and the fiber projection is more extensive in higher mammalian species. The role of histamine in the spinal cord is not known, but it may be involved in, e.g., pain sensation.  相似文献   

12.
The distribution of FMRFamide-like immunoreactive (ir) neurons and fibers was investigated in the central nervous system of developing zebrafish and juvenile sturgeon (sterlet). Adult zebrafish was also studied. In zebrafish embryos FMRFamide-ir elements first appeared 30 h post-fertilization (PF). Ir somata were located in the olfactory placode and in the ventral diencephalon. FMRFamide-ir fibers originating from diencephalic neurons were found in the ventral telencephalon and in ventral portions of the brainstem. At 48 h PF, the ir perikarya in the olfactory placode displayed increased immunoreactivity and stained fibers emerged from the somata. At 60 h PF, bilaterally, clusters of FMRFamide-ir neurons were found along the rostro-caudal axis of the brain, from the olfactory placode to rostral regions of the ventro-lateral telencephalon. At 60 h PF, numerous ir fibers appeared in the dorsal telencephalon, optic lobes, optic nerves, and retina. Except for ir fibers in the hypophysis at the age of 72 h PF, and a few ir cells in the nucleus olfacto-retinalis (NOR) at the age of 2 months PF, no major re-organization was noted in subsequent ontogenetic stages. The number of stained NOR neurons increased markedly in sexually mature zebrafish. In adult zebrafish, other ir neurons were located in the dorsal zones of the periventricular hypothalamus and in components of the nervus terminalis. We are inclined to believe that neurons expressing FMRFamide originate in the olfactory placode and in the ventricular ependyma in the hypothalamus. On the same grounds, a dual origin of FMRFamide-ir neurons is inferred in the sturgeon, an ancestral bony fish: prior to the observation of ir cells in the nasal area and in the telencephalon stained neurons were noted in circumventricular hypothalamic regions.  相似文献   

13.
The connections of the habenular complex have been studied in the crested newt (Amphibia Urodela) by means of degeneration and HRP transport techniques. With the Fink-Heimer method, habenular efferents have been traced to the basal telencephalon, the pallium, the stria medullaris, the dorsal and ventral thalamus, the preoptic and anterior hypothalamus, the fasciculus retroflexus, the tegmentum and the interpeduncular neuropil. Anterograde transport of HRP by habenular neurons reveals fibers projections to the thalamus, the fasciculus retroflexus and the interpeduncular neuropil. After HRP injections in the habenulae, retrograde labelling of cells and fibres was observed, in the striatum, the posterior pole of the telencephalon, the thalamus, the preoptic area, the tegmentum and the raphe. The present results indicate that the habenular complex of the newt receives inputs of various sources (striatum, thalamus, hypothalamus, tegmentum) and is less directly involved in the olfactory functions.  相似文献   

14.
Development of histamine-immunoreactive neurons in the rat brain   总被引:1,自引:0,他引:1  
This study was undertaken to reveal the cellular stores of histamine in developing rat brain and to determine the stage of development during which the histamine-immunoreactive neurons can first be detected. Rats from embryonal day 12 to postnatal day 14 were studied. The brains were fixed in 4% 1-ethyl-3(3-dimethylaminopropyl)carbodiimide and standard immunofluorescence technique was used. The first histamine-immunoreactive neurons were seen on embryonic day 13 in the border of mesencephalon and metencephalon. On embryonic day 15 immunoreactive neurons were detected in ventral mesencephalon and rhombencephalon. In caudal, tuberal, and postmammillary caudal magnocellular nuclei histamine-immunoreactive neurons were first detected on embryonic day 20 while those in the hindbrain had disappeared. Histamine-immunoreactive nerve fibers were first detected on embryonic day 15 in rhombencephalon and mesencephalon and in some areas of diencephalon including the mammillary bodies and frontal cortex. On embryonic day 18 the number of immunoreactive nerve fibers in the hindbrain had decreased considerably, but the olfactory bulb, septal and hypothalamic area, and the cerebral cortex showed immunoreaction in fibers. The density of histamine-immunoreactive fiber networks increased until postnatal day 14 when an adultlike pattern of neurons and fibers had developed. Histamine-immunoreactive neurons are present in embryonal CNS and they develop extensive projections to various brain areas.  相似文献   

15.
Histamine is the neurotransmitter of insect photoreceptor cells but has also been found in a small number of interneurons in the insect brain. In order to investigate whether the accessory medulla (AMe), the putative circadian pacemaker of the cockroach Leucophaea maderae receives direct visual input from histaminergic photoreceptors, we analyzed the distribution of histamine-like immunoreactivity in the optic lobe and midbrain of the cockroach. Intense immunostaining was detected in photoreceptor cells of the compound eye, which terminated in the first optic neuropil, the lamina, and in a distal layer of the medulla, the second optic neuropil. Histamine immunostaining in parts of the AMe, however, originated from a centrifugal neuron of the midbrain. Within the midbrain 21–23 bilaterally symmetric pairs of cell bodies were stained. Most areas of the brain were innervated by one or more of these neurons, but the protocerebral bridge and the mushroom bodies were devoid of histamine immunoreactivity. The branching patterns of most histamine-immunoreactive neurons could be reconstructed individually. While the majority of identified neurons arborized in both brain hemispheres, five cells were local neurons of the antennal lobe. A comparison with other insect species shows striking similarities in the position of certain histamine-immunoreactive neurons, but considerable variations in the presence and branching patterns of others. The data suggest a role for histamine in a non-photic input to the circadian system of the cockroach.  相似文献   

16.
The immunocytochemical distribution of proopiomelanocortin (POMC) peptides (beta-endorphin, ACTH, alpha-MSH, 16K fragment) was studied in the brain of the rhesus monkey (Macaca mulatta). Some animals were administered colchicine intracerebroventricularly prior to sacrifice to enhance the visualization of perikaryal immunoreactivity. Immunoreactive perikarya are localized to hypothalamic infundibular nucleus, giving rise to several distinct projections. Rostral projections extend through midline diencephalic and preoptic areas, and enter the telencephalon. Along this course, immunoreactive fibers are seen in midline hypothalamic and preoptic nuclei, nucleus of the diagonal band, olfactory tubercle, nucleus accumbens, bed nucleus of stria terminalis, septum, and other limbic structures in telencephalon. Caudal to the anterior commissure, some fibers ascend dorsally to enter the midline thalamus, which they innervate. Lateral projections of the infundibular perikarya course through the medial-basal hypothalamus, dorsal to the optic tracts, and enter the amygdala region where they innervate more medially situated amygdaloid nuclei. Caudal projections of the POMC neurons also extend through midline diencephalon, some coursing along a periventricular path to innervate midline hypothalamic and thalamic nuclei. This projection extends into the mesencephalic substantia grisea centralis and may also contribute to the innervation of more dorsally situated nuclei in the pons and medulla, such as the parabrachial nuclei and nucleus tractus solitarius. Other caudal projections originating in the hypothalamus course through the ventral tegmentum of mesencephalon and pons and may contribute to the innervation of midline raphe and other ventrally situated nuclei in the pons and medulla. The distribution of immunoreactive perikarya and fibers in the brain of rhesus monkey is strikingly similar to that found in the rat brain. However, subtle differences appear to exist in the innervation patterns of particular brain regions.  相似文献   

17.
The avian hippocampal formation (HP) is considered to be homologous to the mammalian hippocampus, being involved in memory formation and spatial memory in particular. The subdivisions and boundaries of the pigeon hippocampus have been defined previously by various morphological methods to detect further similarities with the mammalian homologue. We studied the efferent projections of the zebra finch hippocampus by applying Phaseolus vulgaris leucoagglutinin, and three main subdivisions were distinguished on the basis of the connectivity patterns. Dorsolateral injections gave rise to projections innervating the rostralmost extension of the HP, a laminar complex including the dorsal and ventral hyperstriata and the lamina frontalis superior, the rostral lobus parolfactorius, the medial and ventral paleostriatal regions, the lateral septal nucleus, the nucleus of the diagonal band, the dorsolateral corticoid area, the archistriatum posterius, and the nucleus taeniae in the telencephalon. In the diencephalon, labelled axons were seen in the periventricular and lateral hypothalamus, including the lateral mammillary nuclei, and in the dorsolateral and the dorsomedial posterior thalamic nuclei, whereas, in the midbrain, only the area ventralis of Tsai contained hippocampal fibres. With the exception of the bilateral archistriatal efferents, all projections were ipsilateral. Dorsomedial injections gave rise to a local fibre system that was almost completely restricted to the ipsilateral hippocampal formation. In addition, lectin-containing fibres continued in the dorsal septal region and a thin band in the hyperstriatum accessorium, adjacent to the lateral ventricle. Ventral injections gave rise to axons innervating the dorsolateral subdivision ipsilaterally and bilaterally the medial septal nuclei and the contralateral ventral hippocampus. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The histaminergic system and its relationships to the other aminergic transmitter systems in the brain of the zebrafish were studied by using confocal microscopy and immunohistochemistry on brain whole-mounts and sections. All monoaminergic systems displayed extensive, widespread fiber systems that innervated all major brain areas, often in a complementary manner. The ventrocaudal hypothalamus contained all monoamine neurons except noradrenaline cells. Histamine (HA), tyrosine hydroxylase (TH), and serotonin (5-HT) -containing neurons were all found around the posterior recess (PR) of the caudal hypothalamus. TH- and 5-HT-containing neurons were found in the periventricular cell layer of PR, whereas the HA-containing neurons were in the surrounding cell layer as a distinct boundary. Histaminergic neurons, which send widespread ascending and descending fibers, were all confined to the ventrocaudal hypothalamus. Histaminergic neurons were medium in size (approximately 12 microm) with varicose ascending and descending ipsilateral and contralateral fiber projections. Histamine was stored in vesicles in two types of neurons and fibers. A close relationship between HA fibers and serotonergic raphe neurons and noradrenergic locus coeruleus neurons was evident. Putative synaptic contacts were occasionally detected between HA and TH or 5-HT neurons. These results indicate that reciprocal contacts between monoaminergic systems are abundant and complex. The results also provide evidence of homologies to mammalian systems and allow identification of several previously uncharacterized systems in zebrafish mutants.  相似文献   

19.
Intracellular recording and biocytin labeling were carried out in the fire-bellied toad Bombina orientalis to study the morphology and axonal projections of thalamic (TH) neurons and their responses to electrical optic nerve stimulation. Labeled neurons (n = 142) were divided into the following groups: TH1 neurons projecting to the dorsal striatum; TH2 neurons projecting to the amygdala, nucleus accumbens, and septal nuclei; TH3 neurons projecting to the medial or dorsal pallium; TH4 neurons with projections ascending to the dorsal striatum or ventral striatum/amygdala and descending to the optic tectum, tegmentum, and rostral medulla oblongata; TH5 neurons with projections to the tegmentum, rostral medulla oblongata, prectectum, or tectum; and TH6 neurons projecting to the hypothalamus. TH1 neurons are found in the central, TH2 neurons in the anterior and central, TH3 neurons in the anterior dorsal nucleus, and TH4 and TH5 neurons in the posterior dorsal or ventral nucleus. Neurons with descending projections arborize in restricted parts of retinal afferents; neurons with ascending projections do not substantially arborize within retinal afferents. At electrical optic nerve stimulation, neurons in the ventral thalamus respond with excitation at latencies of 10.8 msec; one-third of them follow repetitive stimulation and possibly are monosynaptically driven. Neurons in the dorsal thalamus respond mostly with inhibition at latencies of 42.3 msec and are polysynaptically driven. This corroborates the view that neurons in the dorsal thalamus projecting to the telencephalon receive no substantial direct retinal input and that the thalamopallial pathway of amphibians is not homologous to the mammalian retinogeniculocortical pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号