首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Three special types of xenoliths have recently been found in an aegirine–augite syenite porphyry in Liuhe, Yunnan, China. Petrographical, petrochemical, electron microprobe, and scanning electron microscopy studies indicate that pure calcite xenocrysts and quartz-bearing topaz pegmatite xenoliths result from the degassing of mantle fluids during their migration, and that black microcrystalline iron-rich silicate-melt xenoliths are the product of the extraction of mantle fluids accompanying degassing and are composed dominantly of quartz, chlorite, and iron-rich columnar and sheet silicate minerals with characteristic minerals, such as native iron, apatite, and zircon. According to the bulk-rock chemical and mineral compositions and crystallization states, the microcrystalline melt xenoliths are not the product of conventional magmatism, and especially the existence of native iron further proves that the xenoliths were mantle fluid materials under reduction or anoxic conditions. The study of the special xenoliths furnishes an important deep-process geochemical background of polymetallic mineralization in different rocks and strata in the study area.  相似文献   

2.
Using the secondary spinel standard, the authors have precisely measured the Fe3+/∑ Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, and estimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spinel oxygen barometry. The results indicate that the oxygen fugacities of the lithospheric mantle in eastern China are higher in the south than in the north. Among them, the oxygen fugacity of the North China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, while that of Northeast and South China are the same as that of the global continental mantle. The variations of mantle redox state in eastern China are mainly controlled by the C-O-H fluids derived from the asthenospheric mantle. According to the mantle oxidation state, it can be concluded that the C-O-H fluids in the lithospheric mantle of eastern China consist mainly of CO2 and minor H2O, but CH4-rich fluids should come from the asthenosphere where the ox  相似文献   

3.
The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in Iherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometry. These xenoliths are hosted in alkali basalts and considered as residues of partial melting of the upper mantle, and may contain evidence of mantle evolution. The results show that various kinds of fluid inclusions in Iherzolite xenoliths have been released at distinct times, which could be related to different stages of mantle evolution. In general, primitive fluids of the upper mantle (PFUM) beneath eastern China are dominated by H2, CO2 and CO, and are characterized by high contents of H2 and reduced gases. The compositions of PFUM are highly variable and related to tectonic settings. CO, CO2 and H2 are the main components of the PFUM beneath cratons; the PFUM in the mantle enriched in potassic metasomatism in the northern part of northeastern China has a high content of H2, while CO2 a  相似文献   

4.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes.  相似文献   

5.
Fluids and Melts in the Upper Mantle   总被引:3,自引:0,他引:3  
This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.  相似文献   

6.
Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry. Keywords: alkali-rich porphyry; deep-source xenoliths; enriched mantle; low-degree partial melting; mineralogical characteristics  相似文献   

7.
Experiments on partial melting of mantle lherzolite have been realized at 0.6 and 1.0 GPa and the chemical compositional variations of melts during different melting stages have been first discussed. The results show that the trends of variations in SiO2, CaO, Al2O3, Na2O and TiO2 are different at different melting stages. The melts produced at lower pressure are richer in SiO2 than those at higher pressure. The mantle-derived silica-rich fluids (silicate melts) are polygenetic, but the basic and intermediate-acid silicate melts in mantle peridotite xenoliths from the same host rocks, which have equivalent contents of volatile and alkali components and different contents of other components, should result from in-situ (low-degree) partial melting of mantle peridotite under different conditions (e.g. at different depths, with introduction of C-O-H fluids or in the presence of metasomatic minerals). The intermediate-acid melts may be the result of partial melting (at lower pressure) Opx + Sp + K-Na-rich f  相似文献   

8.
Studies of the mantle-derived iherzolites from Nushan show that in addition to CO2,there were present H2O and small amounts of CO, CH4, SO2,Cl and F in the initial mantlc fluids derived fron the asthenospheric mantlc plumc .The imitial fluids accumulated in some regions of the mantle, resulting in lowering of the mantle solidus (and liquidus) and partial melting of the upper mantle. Melts formed from low-degree of fluid-involved partial melting of the upper mantle would be highly enriched in incompatible elements.Fluies and melts are allthe metasomatic agents for mantle metasomatism, and the interaction between them and the depleted mantle could result in the substan-tial local enrichment of LREE and incompatible elements in the latter.In case that the concentration of H2O in the fluids (and melts) is lower ,only cryptic metasomatism would occur, in case that the concentration of H2O is higher,the degree of partial melting would be higher and hydrous metasomatic phases(e.g. amphiboles )would nucleate. Under such circumstances, there would occur model metasomatism.  相似文献   

9.
Rare earth element (REE) contents, and Sr and Nd isotopic compositions were measured for three suites of mantle xenoliths from the Kuandian, Hannuoba and Huinan volcanoes in the north of the Sino-Korean Platform. From the correlations of Yb contents with Al/Si and Ca/Si ratios, the peridotites are considered to be the residues of partial melting of the primitive mantle. The chondrite-normalized REE compositions are diverse, varying from strongly LREE-depleted to LREE-enriched, with various types of REE patterns. Metasomatic alteration by small-volume silicate melts, of mantle peridotites previously variably depleted due to fractional melting in the spinel peridotite field, can account for the diversity of REE patterns. The Sr/ Ba versus La/Ba correlation indicates that the metasomatic agent was enriched in Ba over Sr and La, suggestive of its volatile-rich signature and an origin by fluid-triggered melting in an ancient subduction zone. The Sr and Nd isotopic compositions of these xenoliths, even from  相似文献   

10.
The Laowangzhai super-large gold orefield,which is situated in northern Mt.Ailao tectonic zone,Yunnan Province,is a typical gold orefield where lamprophyres are temporally and spatially related to gold mineralization.Major element data show that lamprophyres in the orefield are of alkalic series and can be divided into potassic and K-rich calc-alkaline lamprophyres.The rocks are enriched in rare-earth elements as compared with the primary mantle and mid-ocean ridge basalts(MORB).Modelled calculations by the least squares method of Petrological Mixing show that the mantle-source for the lamprophyres in enriched in rarc earth elemeots.The geotectonic development of western Yunnan,Sr and Nd isotopic compositions,incompatible element patterns and linear programing calculations indicate that the fluids were derived from dehydration of submaine sediments which are enriched in ALK,LREE and incompatible elements and then were carried to mantle wedges as a result of plate subduction.That is the main factor leading to the formation of a metasonatic fertile mantle in the area studied.  相似文献   

11.
滇西地区沿金沙江-哀牢山断裂带产出了一套新生代富碱斑岩,其中发现了与镁铁-超镁铁质深源包体岩石共生的含石英的方解石包晶(体)、石英钠长石伟晶岩包体和含玻璃包裹体的纯石英包晶(体)以及富铁熔浆包体.流体包裹体地球化学研究表明,该四类特殊包体的形成与富含CO2流体持续减压而造成的不混溶作用有关;而玻璃包裹体与水溶液包裹体以...  相似文献   

12.
地幔流体对探讨地球深部地质作用意义重大。对山东境内幔源包体矿物的分步加热表明其气体的释放有一定的规律性 :随温度升高,总释气量逐渐增加,至 6 5 0~ 80 0℃出现释气峰,随后释气量逐渐降低。气体各主要组分的释放特征是 :5 0 0℃总有CH4释气峰;随温度升高,H2 释放呈增加趋势,而CO2 呈降低趋势,反映其各自赋存状态的差异和加热过程中可能发生的相互转化作用。根据各温度段气体组成特征,单矿物的释气特征可明显分为三个阶段,它们可能代表了矿物中不同演化阶段的气体.  相似文献   

13.
滇西地区大量产出的富碱斑岩及其包体岩石的形成和演化与该区新生代陆内变形、构造作用、幔源岩浆和深源流体活动,及其与此有关而广泛发育的内生多金属矿产存在必然的联系。本文通过岩相学、岩石化学、电子探针、扫描电镜和能谱分析,较为系统地分析论证了这一关联的内在统一制约和联系的纽带即深部地质过程和由此相伴的含矿地幔流体作用,初步揭示了这种深部过程和地幔流体作用的微观踪迹和方式可以直接表现为:(1)呈脉状和浸染状穿插于深源包体岩石中的富钠玻璃,透光镜下呈微晶和雏晶,颜色随成分差异而不均匀,化学成分以高硅、铝、钠、铁,低钾、钙、镁为特征,矿物成分以钠长石、角闪石、磁铁矿(镜铁矿)、钛铁矿组合为特征,是富碱岩浆携带包体岩石之前即已存在的上地幔流体;(2)呈脉状、团块状和浸染状穿插于主岩和各类包体岩石的富铁玻璃;(3)呈独立包体产出于霓辉正长斑岩中的富铁熔浆包体。后两者物质在透光镜下无光性,呈黑色不透明,反光镜下不反光,但在电子显微镜下呈显微晶质结构,化学成分以高硅、铝、铁,低钙、镁、钠、钾为特征,矿物组成上以硅酸盐和石英为主,含有碳硅石、含铬自然铁、钛铁矿、磷灰石等地幔标志矿物,其中微晶金属和非金属矿物之间呈熔离结构交生,反映了地幔流体的熔浆性质及其与富碱岩浆不混溶的特征;由地幔流体对岩石的交代浸染作用,引起主岩和包体岩石中普遍发育各种蚀变作用,如角闪石化、硅化和绿泥石化等,并导致矿物组合总体上表现为暗色矿物由辉石→角闪石→黑云母→绿泥石的退变序列。该地幔流体微观踪迹的三种表现形式与富碱岩浆共存,并共同运移,但两者由于组成和性质的差异而互不混溶;结合透岩浆流体成矿作用理论和本文论证的综合分析认为,当富碱岩浆和地幔流体系统封闭较好,地幔流体则伴随富碱岩浆的结晶过程对富碱斑岩进行同步自交代蚀变,在斑岩体或其深部形成矿床,构成正岩浆成矿体系,典型成矿实例如马厂箐斑岩钼矿床;若在此成岩成矿过程中发生构造作用扰动,则地幔流体进入岩体与围岩的接触带,或紧邻接触带的地层围岩中进行交代蚀变成矿,构成接触带成矿体系,典型成矿实例如马厂箐矿区中赋存于夕卡岩—大理岩带中的斑岩型铜矿和主要赋存于地层围岩中的斑岩型金矿,若金矿出现在斑岩体内,则一般受控于穿切斑岩体的成岩后断裂;若岩浆和流体运移通道的深大断裂体系发育,环境相对开放,则地幔流体伴随富碱岩浆的成岩过程而脱离岩浆沿分支断裂通道进入远离岩体的不同地层岩石中进行交代蚀变成矿,构成远程热液成矿系统,典型成矿实例如兰坪金顶超大型铅锌矿床;在这一成矿过程中,地幔流体可以随深度和环境变化引起的物理化学条件变化,其性质由熔浆→超临界流体→液相流体转化,并运载和沿途活化成矿物质至适宜容矿部位集中,促使幔壳物质叠加成矿;进而有利于深部成矿并形成大型和超大型矿床。  相似文献   

14.
通过对中甸峨眉山玄武岩中超基性—基性岩包体的岩相学、电子探针、扫描电镜和能谱分析,发现在光学显微镜下呈黑色不透明的物质,在电子显微镜下表现为硅酸盐和尖晶石族氧化物为主的超显微隐晶—非晶质集合体。结合超微晶矿物晶体化学和元素地球化学分析认为,该物质是一种具熔浆和超临界性质及地幔流体属性的富铁(微晶)玻璃,是深部地质过程中,包含于幔源岩浆并与其同步运移但互不混熔的地幔流体作用遗留的微观踪迹物质。该地幔流体在伴随幔源岩浆的结晶成岩过程中,表现出由硅酸盐→尖晶石→磁铁矿→铬铁矿→钛铁矿的熔离作用,并相应触发主岩和包体岩石的交代蚀变和金属矿化,是推动和引发地壳中成岩成矿的重要动力源和物质源。由此进一步认识到,滇西地区上地幔发育峨眉地幔柱活动,为该区二叠纪之后的不同部位和不同矿种的内生多金属成矿提供了有利的深部地质背景条件。  相似文献   

15.
Mesozoic alkaline (subalkaline) mafic rocks from the southern Tien Shan contain numerous listwaenite xenoliths (on average, 50–60% of all xenoliths) and less abundant serpentinites, which develop after nodules of mantle spinel lherzolites and, more rarely, pyroxenites. Various models of listwaenite genesis and the problem of a “listwaenite layer” were considered. The listwaenites consist of three heterogeneous mineral (element) assemblages of different ages: (a) mantle ultrabasic protolith (relics of spinels, pyroxenes, and other minerals); (b) products of shallow-depth serpentinization; and (c) minerals (elements) of hydrothermal-metasomatic carbonation (listwaenitization), which occurred under near-surface conditions but was related to mantle fluids (carbon isotope signatures of carbonates, introduction of Sr, its correlation with CO2, etc.). It cannot be ruled out that the CO2 degassing of the mantle occurred not only in the Mesozoic but also in the Cenozoic. This process was accompanied by the formation of occurrences of chalcophile elements (Hg, Sb, Au, Ag, Zn, Cu, and Pb), F, Ba, and Sr. Late Cenozoic celestite deposits deserve special attention in this context. They form the largest Sr province in the Mediterranean mobile belt and were presumably also related to mantle sources.  相似文献   

16.
地幔流体作用——地幔捕虏体中流体包裹体的研究   总被引:8,自引:0,他引:8  
被碱性玄武岩和金伯利岩带到地表的地幔捕虏体是认识地球深部信息的窗口 ,是人们能够直接观察到的一种上地幔样品 ,其矿物中流体包裹体的存在提供了上地幔流体活动的直接证据。流体 /地幔矿物之间元素的分配对约束地幔交代过程中流体相的作用和上地幔流体的组成 ,揭示俯冲带壳幔物质的再循环过程 ,解释岛弧玄武岩高场强元素亏损的原因有重要意义。文章对近年来有关地幔捕虏体中流体包裹体的研究进行了评述 ,并结合近年来流体 /地幔矿物之间元素分配的高温高压实验研究讨论了流体在地幔中的重要作用。  相似文献   

17.
滇西玉龙县小桥头硅化霓辉正长斑岩中,含有较多镁铁-超镁铁质深源包体岩石。经岩相学和电子探针及扫描电镜分析发现,伴随交代蚀变,寄主岩和各类镁铁-超镁铁质包体岩石中,普遍发育沿粒间和矿物晶体裂隙或解理纹贯入或穿插的黑色不透明物质,主要由微晶硅酸盐矿物和磁铁矿组成。本文研究认为,硅酸盐矿物与磁铁矿在背散射电子图像中表现为熔离特征,这种在透光显微镜下呈黑色不透明的微晶固体,是引发交代蚀变、具熔浆流体特点和超临界流体性质的地幔流体交代作用的一种微观表现。  相似文献   

18.
Fluid inclusions in mantle xenoliths   总被引:23,自引:0,他引:23  
Fluid inclusions in olivine and pyroxene in mantle-derived ultramafic xenoliths in volcanic rocks contain abundant CO2-rich fluid inclusions, as well as inclusions of silicate glass, solidified metal sulphide melt and carbonates. Such inclusions represent accidentally trapped samples of fluid- and melt phases present in the upper mantle, and are as such of unique importance for the understanding of mineral–fluid–melt interaction processes in the mantle. Minor volatile species in CO2-rich fluid inclusions include N2, CO, SO2, H2O and noble gases. In some xenoliths sampled from hydrated mantle-wedges above active subduction zones, water may actually be a dominant fluid species. The distribution of minor volatile species in inclusion fluids can provide information on the oxidation state of the upper mantle, on mantle degassing processes and on recycling of subducted material to the mantle. Melt inclusions in ultramafic xenoliths give information on silicate–sulphide–carbonatite immiscibility relationships within the upper mantle. Recent melt-inclusion studies have indicated that highly silicic melts can coexist with mantle peridotite mineral assemblages. Although trapping-pressures up to 1.4 GPa can be derived from fluid inclusion data, few CO2-rich fluid inclusions preserve a density representing their initial trapping in the upper mantle, because of leakage or stretching during transport to the surface. However, the distribution of fluid density in populations of modified inclusions may preserve information on volcanic plumbing systems not easily available from their host minerals. As fluid and melt inclusions are integral parts of the phase assemblages of their host xenoliths, and thus of the upper mantle itself, the authors of this review strongly recommend that their study is included in any research project relating to mantle xenoliths.  相似文献   

19.
在金伯利岩中新发现的几种矿物及其意义   总被引:9,自引:1,他引:9       下载免费PDF全文
新近发现华北地台金伯利岩中存在自然铁、自然铜、自然锡、硅铁石、二硅铁矿、未命名的Si、Fe、Ti互化物及含铬黑镁铁钛矿等前人未曾报导过的矿物。据初步研究,它们与处于强还原环境的地幔深层流体有关。这些矿物的发现,首次为软流层中的流体交代作用提供了实物证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号