首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
NMDA受体NR2B亚基作为镇痛靶点的研究进展   总被引:1,自引:0,他引:1  
NMDA(N-methyl-D-aspartate)受体是兴奋性神经递质谷氨酸受体的一种亚型,是一种异聚体配体门控型离子通道,参与体内神经发育、神经元的兴奋性突触传递、突触可塑性、中枢敏化、神经元死亡等多种不同的生理和病理过程.新近研究表明,NMDA受体的NR2B亚基对NMDA受体药理和功能特性起决定作用,是一个治疗与NMDA受体相关疾病的潜在靶点.本文就含有NR2B亚基的NMDA受体的结构、分布、功能特性、在伤害性信息传递过程中的作用以及NR2B选择性拮抗剂作为镇痛药物的研究进展进行总结,希望能更全面地了解NMDA受体的功能与作用机制.  相似文献   

2.
NMDA受体NR2B亚单位拮抗剂与神经系统退行性疾病   总被引:1,自引:0,他引:1  
谷氨酸(Glu)是脊椎动物中枢神经系统中的主要兴奋性神经递质,其受体可分为代谢型和离子型两大类。离子型受体由三种组成:AMPA受体,KA受体及NMDA受体。其中NMDA受体被认为是突触可塑性及皮质和海马神经元长时程增强效应(Long-term potentiation,LTP)的主要调控者,构成了中枢神经系统的重要功能如学习和记忆的基础。NMDA受体的过度激活在多种神经系统退行性疾病的发生和发展过程中发挥着重要作用。但是,由于非选择性NMDA受体拮抗剂的选择性较低,故在发挥明显的治疗作用的同时也发生了严重的副反应,影响了其临床应用。而NMDA受体的NR2B亚单位的分布相对较集中,选择性NR2B受体拮抗剂受到了越来越多的关注。本文就近年来NMDA受体NR2B亚单位拮抗剂在神经系统退行性疾病中的研究进展作一综述。  相似文献   

3.
钙调素参与离子通道和受体功能的调控   总被引:7,自引:0,他引:7  
离子通道和受体是神经细胞信号发生及传递的结构基础.近年来的研究证明,离子通道和受体的功能受到细胞内及细胞外许多化学物质和信号分子的调控.越来越多的证据表明,正是这些以离子通道和受体为靶标的调控机制决定了中枢神经系统功能的复杂性和可塑性.在众多复杂的调控机制中,Ca 2+ 信号途径对于神经细胞的正常活动和病理改变均是至关重要的.经离子通道和受体内流的Ca 2+ 可对Ca 2+ 内流进行反馈调控,或是调控其他离子通道和受体的功能,它们的共同特点是都有Ca 2+ /钙调素(CaM)的参与.Ca 2+ /CaM通过对离子通道和受体进行反馈调控来保持通道之间的功能协调性和胞内的Ca 2+ 平衡.文中阐述了Ca 2+ /CaM参与调控离子通道和受体功能的分子过程,进一步说明了细胞编码Ca 2+信号的机理.  相似文献   

4.
百日咳毒素与霍乱毒素对乙酰胆碱诱导气孔运动的影响   总被引:1,自引:0,他引:1  
在动物细胞中神经递质乙酰胆碱与其受体结合后,通过G蛋白的偶联传递信号.在植物中,乙酰胆碱也普遍存在并参与调节许多生理过程.乙酰胆碱及其受体参与了气孔运动的调节,G蛋白的激活剂霍乱毒素与抑制剂百日咳毒素影响乙酰胆碱诱导的气孔开放,而且仅在含Ca 2+ 的介质中才能起作用;同时用Ca 2+ 荧光探针Fluo-3检测保卫细胞胞质Ca 2+ 动态变化,表明乙酰胆碱的胞内信号转导中有Ca 2+ 的参与.由此推测在毒蕈碱型乙酰胆碱受体介导乙酰胆碱诱导的气孔运动中,可能存在与G蛋白偶联的信号转导.  相似文献   

5.
以胺羧配体EDTA、DTPA作为二价模板框架,利用简便方法设计合成了以色氨酸为核心识别单元、含有苯丙氨酸的开链式结构生物受体,并利用荧光光谱和质谱等技术研究了受体与碱土金属离子(Ca2+、Ba2+、Mg2+)和过渡金属离子(Cu2+、Fe2+、Co2+、Ni2+、Mn2+、Zn2+、Cd2+)以及碱金属离子(Li+、Na+、K+)之间的相互作用.结果发现,在水溶液中金属离子与吲哚环之间存在相互作用,这两个受体对多种具有重要生物学和环境保护意义的金属离子有着良好的选择性识别作用.  相似文献   

6.
一氧化氮(NO)是植物体内重要的信号分子,生物和非生物的刺激都能使NO与胞内第2信使Ca2+和蛋白激酶产生相互作用.以动物细胞NO - Ca2+信号途径为基础,列举了植物NO信号途径中Ca2+和多种蛋白激酶的可能作用,论述了植物细胞中NO,Ca2+和蛋白激酶的信号交叉.  相似文献   

7.
在Alzheimer病(AD)出现神经变性前的早期记忆功能障碍中,可溶性β-淀粉样蛋白(Aβ)发挥了重要作用.Aβ及其活性片段对海马长时程增强(LTP)的压抑效应与其对学习记忆认知行为的伤害作用具有密切联系,但其机制仍不清楚.鉴于突触后兴奋性和抑制性受体/通道在突触传递、包括LTP的诱导中起着关键性调制作用,利用全细胞膜片钳技术观察了β-淀粉样蛋白31-35片段(Aβ31-35)和25-35片段(Aβ25-35)对急性分离的海马CA1区锥体细胞谷氨酸(Glu)受体、N-甲基-D-天冬氨酸(NMDA)受体和γ-氨基丁酸(GABA)受体通道电流的影响.结果显示:急性给予Aβ25-35或Aβ31-35可对Glu受体电流和GABA受体电流产生相反的调制作用.Aβ25-35预处理剂量依赖性地减小了Glu和NMDA引起的全细胞内向电流,相反,GABA受体电流被明显增强;小片段的Aβ31-35也选择性抑制了Glu和NMDA受体电流,增强了GABA受体电流;然而,给予Aβ25-35的反序列Aβ35-31预处理后,Glu,NMDA和GABA引起的受体电流均未出现明显改变.这些结果表明,Aβ25-35和Aβ31-35片段急性处理可导致海马锥体细胞NMDA受体和GABAA受体分别受到抑制和易化影响,这可能有助于解释AD早期可溶性AB对海马LTP及认知行为造成的伤害作用.同时,Aβ25-35Aβ31-35片段具有的类似效应提示,31-35序列很可能是Aβ发挥神经毒性作用的活性中心.  相似文献   

8.
不同机制参与黄体酮扩张兔血管作用   总被引:2,自引:0,他引:2  
用离体血管条灌流实验方法 ,观察黄体酮对血管条去甲肾上腺素 (NA) ,Ca Cl2 ,KCl反应的影响 ,并观察给予 L- NNA、甲烯蓝 (MB)、吲哚美辛、普萘洛尔及去除内皮细胞后 ,黄体酮扩张血管作用的变化 .结果发现 :黄体酮 10 -4 mol· L-1及 10 -5mol· L-1分别使 NA和无 Ca2 +高 K+Krebs液中 Ca Cl2 量效曲线明显右移 ,最大反应压低 ,PD2 ′分别为 3.51和 4 .56 .黄体酮 2 .5× 10 -4mol· L-1使无 Ca2 + 液中 NA10 -6mol· L-1收缩血管作用明显减弱 (p <0 .0 0 1) ,但不影响 Ca Cl210 mmol· L-1引起的收缩 .L - NNA,MB及去除内皮可明显减弱黄体酮扩张 KCl 4 0 mmol· L-1的收缩血管作用 ,但吲哚美辛和普萘洛尔无明显影响 .结果表明 :黄体酮可通过受体操纵 Ca2 + 通道抑制 IP3 途径引起的内 Ca2 + 释放 ,也可通过电压依赖式 Ca2 + 通道抑制外 Ca2 + 内流 ,使血管条舒张 ,其作用有内皮依赖性 ,部分与 NO和 c GMP有关  相似文献   

9.
Ca2+信使系统是植物体内重要的信号通路,它将许多细胞外信号转化为细胞内的信号以影响许多蛋白激酶活性,从而引起植物生长发育的多种反应.在正常Ca2+浓度下,仅激素处理不能生根的丝瓜外植体,处以不同Ca2+浓度处理时,随Ca2+浓度升高,外植体生根数明显加快并增多,且有少量植株叶腋处异化生根,在一定程度上改变了腋芽的发育方向,这说明Ca2+改变了卷须芽或花芽的发育方向,使其发育为根.但Ca2+超过一定浓度后会影响外植体的正常营养生长.  相似文献   

10.
刊中刊     
正Nature了解从封闭构形向活跃和钝化构形转变的结构基础,对于解读离子移变谷氨酸盐受体(NMDA受体、AMPA受体、δ受体和kainate受体)作为中枢神经系统中激发性突触传输之介质的功能来说至关重要。在受体的细胞外表面上发生的配体结合将阳离子选  相似文献   

11.
L Chen  L Y Huang 《Nature》1992,356(6369):521-523
The roles of N-methyl-D-aspartate (NMDA) receptors and protein kinase C (PKC) are critical in generating and maintaining a variety of sustained neuronal responses. In the nociceptive (pain-sensing) system, tissue injury or repetitive stimulation of small-diameter afferent fibres triggers a dramatic increase in discharge (wind-up) or prolonged depolarization of spinal cord neurons. This central sensitization can neither be induced nor maintained when NMDA receptor channels are blocked. In the trigeminal subnucleus caudalis (a centre for processing nociceptive information from the orofacial areas), a mu-opioid receptor agonist causes a sustained increase in NMDA-activated currents by activating intracellular PKC. There is also evidence that PKC enhances NMDA-receptor-mediated glutamate responses and regulates long-term potentiation of synaptic transmission. Despite the importance of NMDA-receptors and PKC, the mechanism by which PKC alters the NMDA response has remained unclear. Here we examine the actions of intracellularly applied PKC on NMDA-activated currents in isolated trigeminal neurons. We find that PKC potentiates the NMDA response by increasing the probability of channel openings and by reducing the voltage-dependent Mg2+ block of NMDA-receptor channels.  相似文献   

12.
Excitatory amino acids act via receptor subtypes in the mammalian central nervous system (CNS). The receptor selectively activated by N-methyl-D-aspartic acid (NMDA) has been best characterized using voltage-clamp and single-channel recording; the results suggest that NMDA receptors gate channels that are permeable to Na+, K+ and other monovalent cations. Various experiments suggest that Ca2+ flux is also associated with the activation of excitatory amino-acid receptors on vertebrate neurones. Whether Ca2+ enters through voltage-dependent Ca2+ channels or through excitatory amino-acid-activated channels of one or more subtype is unclear. Mg2+ can be used to distinguish NMDA-receptor-activated channels from voltage-dependent Ca2+ channels, because at micromolar concentrations Mg2+ has little effect on voltage-dependent Ca2+ channels while it enters and blocks NMDA receptor channels. Marked differences in the potency of other divalent cations acting as Ca2+ channel blockers compared with their action as NMDA antagonists also distinguish the NMDA channel from voltage-sensitive Ca2+ channels. However, we now directly demonstrate that excitatory amino acids acting at NMDA receptors on spinal cord neurones increase the intracellular Ca2+ activity, measured using the indicator dye arsenazo III, and that this is the result of Ca2+ influx through NMDA receptor channels. Kainic acid (KA), which acts at another subtype of excitatory amino-acid receptor, was much less effective in triggering increases in intracellular free Ca2+.  相似文献   

13.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

14.
A M Thomson  V E Walker  D M Flynn 《Nature》1989,338(6214):422-424
One class of excitatory amino-acid receptors, the N-methyl-D-aspartate (NMDA) receptors, mediates transmission at a small, but important, group of synapses in the neocortex. These receptors are implicated in neuronal plasticity during development in young mammals and in memory acquisition in adults. Recently, responses of isolated membrane patches to NMDA were shown to be greatly enhanced by glycine. This, together with the demonstration that the strychnine-insensitive glycine-binding site is distinct from, but linked to, the NMDA receptor has excited intense interest in glycine as a synaptic modulator. Before proposing a physiological function, however, it is important to determine whether glycine could enhance synaptic responses to NMDA receptor activation in intact, adult tissue. An earlier study failed to demonstrate enhancement of NMDA responses when glycine was applied and it was proposed that in intact tissue the high-affinity glycine site was already saturated by endogenous glycine. It remained possible that glycine concentrations can be maintained at low levels close to synaptic receptors. We have examined responses of neurons in slices of adult neocortex to focal applications of excitatory amino acids and glycine and report enhancement by glycine of NMDA receptor-mediated excitatory postsynaptic potentials.  相似文献   

15.
L T Thompson  J R Moskal  J F Disterhoft 《Nature》1992,359(6396):638-641
Persistent neuronal plasticity, including that observed at some hippocampal synapses, requires N-methyl-D-aspartate (NMDA)-mediated transmission. NMDA receptor activation may be necessary for hippocampus-dependent learning as antagonists block acquisition in many such tasks. The behavioural effects of NMDA agonists are less well defined. We have shown that a monoclonal antibody (B6B21) displaced [3H]-glycine that was bound specifically to the NMDA receptor, and enhanced the opening of its integral cation channel in a glycine-like fashion, effects that were competitively antagonized by 7-chlorokynurenic acid. B6B21 also enhanced long-term potentiation in hippocampal slices. We report here that intraventricular infusions of B6B21 significantly enhances acquisition rates in hippocampus-dependent trace eye blink conditioning in rabbits, halving the number of trials required to reach a criterion of 80% conditioned responses. Peripheral injections of D-cycloserine, a partial agonist of the glycine site on the NMDA receptor which crosses the blood-brain barrier, also doubles rabbits' learning rates. Pseudoconditioning control experiments indicated a lack of nonspecific behavioural sensitization effects. Our data suggest that enhanced activation of the glycine coagonist site on the NMDA receptor/channel complex facilitates one form of associative learning and may be used in other learning tasks.  相似文献   

16.
Salter MG  Fern R 《Nature》2005,438(7071):1167-1171
Injury to oligodendrocyte processes, the structures responsible for myelination, is implicated in many forms of brain disorder. Here we show NMDA (N-methyl-D-aspartate) receptor subunit expression on oligodendrocyte processes, and the presence of NMDA receptor subunit messenger RNA in isolated white matter. NR1, NR2A, NR2B, NR2C, NR2D and NR3A subunits showed clustered expression in cell processes, but NR3B was absent. During modelled ischaemia, NMDA receptor activation resulted in rapid Ca2+-dependent detachment and disintegration of oligodendroglial processes in the white matter of mice expressing green fluorescent protein (GFP) specifically in oligodendrocytes (CNP-GFP mice). This effect occurred at mouse ages corresponding to both the initiation and the conclusion of myelination. NR1 subunits were found mainly in oligodendrocyte processes, whereas AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor subunits were mainly found in the somata. Consistent with this observation, injury to the somata was prevented by blocking AMPA/kainate receptors, and preventing injury to oligodendroglial processes required the blocking of NMDA receptors. The presence of NMDA receptors in oligodendrocyte processes explains why previous studies that have focused on the somata have not detected a role for NMDA receptors in oligodendrocyte injury. These NMDA receptors bestow a high sensitivity to acute injury and represent an important new target for drug development in a variety of brain disorders.  相似文献   

17.
M L Mayer  L Vyklicky  J Clements 《Nature》1989,338(6214):425-427
Responses to the excitatory amino acid N-methyl-D-aspartate (NMDA) are markedly potentiated by nanomolar concentrations of glycine. This is due to the action of glycine at a novel strychnine-resistant binding site with an anatomical distribution identical to that for NMDA receptors, suggesting that the NMDA receptor channel complex contains at least two classes of amino-acid recognition site. Antagonists at the glycine-binding site associated with NMDA receptors act as potent non-competitive antagonists, but do not alter the mean open time or conductance, as estimated by fluctuation analysis. The mechanisms by which glycine acts on NMDA receptors are unknown, but single-channel recording experiments show an increase in opening frequency with no change in mean open time or conductance, suggesting that glycine could regulate transitions to states that are intermediate between binding of NMDA receptor agonists and ion-channel gating. It has been suggested that glycine acts as a co-agonist at the NMDA receptor, and that responses to NMDA cannot be obtained in the complete absence of glycine, but in these experiments the response to NMDA was measured at equilibrium, and it is unlikely that sufficient temporal resolution was achieved to detect rapid alterations in receptor gating. Using a fast perfusion system we find that glycine regulates desensitization at NMDA receptors; this has a major effect on the response to NMDA measured at equilibrium, as would occur with slower applications of agonist. Reduction of NMDA receptor desensitization by glycine provides an example of a novel mechanism for regulation of ion-channel activity.  相似文献   

18.
H Mori  H Masaki  T Yamakura  M Mishina 《Nature》1992,358(6388):673-675
The N-methyl-D-aspartate (NMDA) receptor channel is highly permeable to Ca2+ but is blocked by Mg2+ in a voltage-dependent manner. These characteristics are essential for the NMDA receptor channel to mediate the induction of long-term potentiation of synaptic efficacy, a form of activity-dependent synaptic plasticity thought to underlie memory, learning and development. Recent studies have revealed the molecular and functional diversity of the NMDA receptor channel subunits, which are classified into the epsilon and zeta families according to the amino-acid sequence homology. Here we report that replacement by glutamine of asparagine 598 in putative transmembrane segment M2 of the zeta 1 subunit, strongly reduces the sensitivity of the heteromeric epsilon 2/zeta 1 NMDA receptor channel to Mg2+ block. The corresponding mutation of the epsilon 2 subunit has a similar effect. Furthermore, the heteromeric epsilon 2/zeta 1 NMDA receptor channel with the mutation on both subunits shows greatly reduced sensitivity to MK-801, a channel blocker of the NMDA receptor channel, but is still susceptible to inhibition by Zn2+. These findings suggest that the conserved asparagine residue in segment M2 constitutes a Mg(2+)-block site of the NMDA receptor channel, and that the MK-801 site overlaps the Mg2+ site.  相似文献   

19.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

20.
The amino acids L-glutamic and L-aspartic acids form the most widespread excitatory transmitter network in mammalian brain. The excitation produced by L-glutamic acid is important in the early development of the nervous system, synaptic plasticity and memory formation, seizures and neuronal degeneration. The receptors activated by L-glutamic acid are a target for therapeutic intervention in neurodegenerative diseases, brain ischaemia and epilepsy. There are two types of receptors for the excitatory amino acids, those that lead to the opening of cation-selective channels and those that activate phospholipase C (ref. 11). The receptors activating ion channels are NMDA (N-methyl-D-aspartate) and kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate)-sensitive receptors. The complementary DNAs for the kainate/AMPA receptor and for the metabotropic receptor have been cloned. We report here on the isolation and characterization of a protein complex of four major proteins that represents an intact complex of the NMDA receptor ion channel and on the cloning of the cDNA for one of the subunits of this receptor complex, the glutamate-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号