首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
The inhibitive and adsorption activity of some pyrrolidinium ionic liquids (ILs) for the dissolution of copper in 1 M HNO3 solution was tested using chemical methods such as weight loss and electrochemical techniques; potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrical frequency modulation (EFM) techniques. The results indicated that the ionic liquids under investigation exhibited promising corrosion inhibitory performance in 1 M HNO3 and their efficiencies reached up to 85% at 0.05 mM. Also, an enhancement in the inhibition efficiency (% IE) accompanied the increase in inhibitor concentration. The polarization measurements suggested that these ionic liquid inhibitors act as mixed-type inhibitors. The adsorption of the ionic liquid inhibitors on the copper surface obey the Langmuir adsorption isotherm. Thermodynamic parameters were calculated and discussed. The surface morphology of the copper surface was examined using different techniques. Correlation between the calculated % IE from experiments and some quantum chemical parameters was established.

The inhibitive and adsorption activity of some pyrrolidinium ionic liquids (ILs) for the dissolution of copper in 1 M HNO3 solution was tested using chemical methods such as weight loss and electrochemical techniques.  相似文献   

3.
This study aims at preparing three cationic surfactants based on benzotriazole and evaluating their efficiencies as corrosion inhibitors for copper electrodes in seawater using different electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM)). FTIR and 1H NMR spectroscopic techniques confirmed the chemical structures of the as-prepared cationic compounds. The inhibition efficiency increased with the increase the concentration of the as-prepared compounds in the solution. The curves of the potentiodynamic polarization and the plots of EIS techniques show that the performance of all investigated compounds as mixed type. The standard free energy values imply that the three as-prepared compounds show physicochemical adsorption and obey the Langmuir adsorption model. AFM technique observed the reduction in the surface roughness due to the protective film formed on the copper surface. Finally, computational calculations show a great correlation with the experimental results due to the electron-donating effect.

Three cationic surfactants based on benzotriazole were prepared and their efficiencies as corrosion inhibitors for copper electrodes in seawater were evaluated using different electrochemical techniques (polarization methods, EIS techniques and atomic force microscopy).  相似文献   

4.
Herein, two Schiff base derivatives of vanillin and divanillin with 2-picolylamine, namely, 2-methoxy-4-((pyridin-2-ylmethylimino)methyl)phenol (compound A) and 3,3′-dimethoxy-5,5′-bis-((pyridin-2-ylmethylimino)methyl)-[1,1′-biphenyl]-2,2′-diol (compound B), respectively, were synthesized. Additionally, their adsorption characteristics and corrosion inhibition behavior were compared for mild steel in 1 M HCl using electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss methods. Compound B was found to impart a better anti-corrosive effect (around 95% inhibition efficiency at 313 K) than compound A. The inhibitors act as effective mixed-type inhibitors and exhibit Langmuir-type adsorption behaviour. The kinetic–thermodynamic parameters together with the data obtained from density functional theory (DFT) and molecular dynamics (MD) simulations illustrate the mechanism of corrosion and mode of adsorption of both inhibitors on the metal surface. The better corrosion mitigation propensity of the dimeric form of the inhibitor (compound B) over the monomeric form (compound A) was tested experimentally and explained according to the theoretical data.

Two Schiff base derivatives of vanillin and divanillin with 2-picolylamine are synthesized and their anti-corrosive propensity for mild steel in aqueous HCl are compared.  相似文献   

5.
To improve the corrosion inhibition efficiency of eco-friendly polyaspartic acid (PASP) for mild steel in acidic solutions, PASP/N-(3-aminopropyl)imidazole (PD-1) and PASP/N-(3-aminopropyl)-imidazole-co-n-dodecylamine (PD-2) were chemically synthesized by the facile ring-opening reaction of polysuccinimide. Inhibition efficiencies of PD-1 and PD-2 for mild steel in a 0.5 M H2SO4 solution were investigated by electrochemical measurements (electrochemical impedance and polarization) and the weight loss method. In comparison with PASP, PD-1 and PD-2 show improved inhibition efficiencies due to the functional groups. In particular, PD-2 shows superior corrosion inhibition capacity, and the efficiency is up to 94% at a relatively low concentration of 100 mg L−1 at 298 K, as determined by potentiodynamic polarization measurements. Surface analysis of mild steel with PD-2 as an inhibitor clearly indicates that the inhibitor molecules adsorb on the steel surface and efficiently inhibit the corrosion of mild steel. The present work provides very meaningful results in designing and preparing new polymer inhibitors with high inhibition efficiency.

To improve the corrosion inhibition efficiency of polyaspartic acid (PASP) for mild steel in acidic solutions, PASP/N-(3-aminopropyl)imidazole (PD-1) and PASP/N-(3-aminopropyl)-imidazole-co-n-dodecylamine (PD-2) were synthesized.  相似文献   

6.
The corrosion performance of carbon steel was tested in four polymeric ionic liquids (PILs) that differed only in the fatty acid linked to the chitosan (CS) amine group. The measurements were implemented involved the hydrogen evolution rate (HER), gravimetric measurements, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and quantum chemical estimations. The morphology and the elements arranged on the metal were considered by a scanning electron microscopy (SEM) system attached to an energy dispersive X-ray (EDX) system. The addition of polymeric ionic liquids hindered the rate of hydrogen generation. The order of the inhibitors efficiency was CSPTA-lauric > CSPTA-myristic > CSPTA-palmitic > CSPTA-stearic. The polarization method proved that the percentage inhibition efficiency increases with increasing the inhibitors concentration in 1 M HCl, representing a drop in the corrosion rate of carbon steel. On the other hand, the percentage inhibition decreased with the increase in temperature. Quantum chemical calculations revealed that the tested ionic liquids could react with the iron surface via electron transfer from the metal atom to ionic liquid molecule.

The corrosion performance of carbon steel was tested in four polymeric ionic liquids (PILs) that differed only in the fatty acid linked to the chitosan (CS) amine group.  相似文献   

7.
The corrosion inhibition of C-steel in 1 M HCl was assessed using three newly synthesized hydrazide derivatives (H1, H2 and H3) using weight loss (WL), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Also, the adsorption of these compounds was confirmed using several techniques such as atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). High inhibition efficiencies were obtained resulting from the constitution of the protective layer on the C-steel surface, which increased with increasing concentration and temperature and reached 91.7 to 96.5% as obtained from the chemical method at 20 × 10−6 M at 45 °C. The polarization curves refer to these derivatives belonging to mixed-type inhibitors. The adsorption of (H1, H2 and H3)on the CS surface follows the Temkin adsorption isotherm. Inhibition influence of hydrazide derivatives at the molecular level was greatly proven using quantum chemical calculations and Monte Carlo simulation methods. Furthermore, the molecular simulation results evidenced the adsorption of these derivatives on the carbon steel surface.

The inhibitory effect of three newly synthesized hydrazide derivatives on carbon steel corrosion in hydrochloric acid showed better inhibition efficiency (97.5%) and their inhibition mechanism is presented.  相似文献   

8.
In this work, three new bis-Schiff bases, namely 1,1′-(2,2′-dibromo-[1,1′-biphenyl]-4,4′-diyl)bis(N-phenylmethanimine) (BNSB01), 1,1′-(2,2′-dibromo-[1,1′-biphenyl]-4,4′-diyl)bis(N-(4-bromophenyl)methanimine) (BNSB02) and 4,4′-(((2,2′-dibromo-[1,1′-biphenyl]-4,4′-diyl)bis(methanylylidene))bis(azanylylidene))diphenol (BNSB03), were synthesized. These Schiff bases were evaluated for their corrosion inhibition ability on mild steel specimens in 0.5 M HCl by using electrochemical and weight loss techniques. The inhibition performance was found to increase with an increase in the inhibitor concentration and decrease with an increase in temperature. The results revealed that the synthesized compounds followed the Langmuir isotherm model and were efficient mixed-type inhibitors. The electrochemical impedance studies also indicated that with a rise in the concentration of inhibitors, the charge transfer resistance increased. The surface morphology of the inhibited and uninhibited specimens was examined using scanning electron microscopy (SEM). The efficiency of the compounds was in the order BNSB02 > BNSB03 > BNSB01. All the results obtained were in good correlation with each other.

The inhibitory effect of three new bis-Schiff bases on mild steel corrosion in 0.5 M HCl was studied by the weight loss method and the electrochemical method.  相似文献   

9.
The inhibition potency of expired thiamine or vitamin B1 (VB1) and riboflavin or vitamin B2 (VB2) against SABIC iron corrosion in 0.5 M H2SO4 solutions was investigated using chemical and electrochemical techniques. Theoretical studies such as DFT and MC simulations were performed on both VB1 and VB2 inhibitors to obtain information related to the experimental results. It has been found that the inhibition efficacy assigned from all measurements used increases with increasing concentration of the two expired vitamins and reduces at elevated temperatures. It reached 91.14% and 92.40% at 250 ppm of VB1 and VB2, respectively. The inhibition was explicated by the adsorption of the complex formed between expired vitamins and ferrous ions on the SABIC iron surface. The adsorption was found to obey the Langmuir isotherm model. Galvanostatic polarization demonstrated that the two expired vitamins act as an inhibitor of the mixed type. These expired vitamins have proven effective in inhibiting the pitting corrosion induced by the presence of Cl ions. The pitting potential is transferred to the positive values showing resistance to pitting damage. The theoretical parameter values are consistent with experimental results.

The inhibition potency of expired thiamine or vitamin B1 (VB1) and riboflavin or vitamin B2 (VB2) against SABIC iron corrosion in 0.5 M H2SO4 solutions was investigated using chemical and electrochemical techniques.  相似文献   

10.
The structural and corrosion inhibition properties of four different transition-metal complexes of heteroleptic S-donor atom dithiophosphonate and N-donor atom phenanthroline ligands are reported. Full structural characterization of the Co, Ni, Zn and Cd complexes was achieved with the aid of single-crystal X-ray crystallography. Structural elucidation revealed the formation of a 4-coordinate Zn(ii) complex, and 6-coordinate Ni(ii) and Cd(ii), as well as a novel dithiophosphonato Co(ii) complex. The ability of the complexes with this ligand type to act as inhibitors of mild steel corrosion in 1 M HCl solution is reported for the first time. Corrosion inhibition potentials of the complexes were assessed using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and density functional theory (DFT). The open circuit potential (OCP) time profile showed the system achieved a steady-state potential before the first 600 s after submerging the working electrode in the corrosive medium. The studied metal complexes are good inhibitors of mild steel corrosion in 1 M HCl and were found to retard the corrosion rate by forming an adsorbed pseudocapacitive film on the steel surface. The order of inhibition efficiencies was in the order Ni (94.14%) > Cd (92.28%) > Zn (91.14%) > Co (72.53%).

The structural and corrosion inhibition properties of four different transition-metal complexes of heteroleptic S-donor atom dithiophosphonate and N-donor atom phenanthroline ligands are reported.  相似文献   

11.
The corrosion inhibitive capabilities of some ferrocene-based Schiff bases on aluminium alloy AA2219-T6 in acidic medium were investigated using Tafel polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement, FT-IR spectroscopy and scanning electron microscopic (SEM) techniques. The influence of molecular configuration on the corrosion inhibition behavior has been explored by quantum chemical calculation. Ferrocenyl Schiff bases 4,4′-((((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcua), 4,4′-((((ethane-1,2-diylbis(oxy))bis(2-methoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcub) and 4,4′-((((ethane-1,2-diylbis(oxy))bis(2-ethoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcuc) have been synthesized and characterized by FT-IR, 1H and 13C NMR spectroscopic studies. These compounds showed a substantial corrosion inhibition against aluminium alloy in 0.1 M of HCl at 298 K. Fcub and Fcuc showed better anticorrosion efficiency as compared with Fcua due to the electron donating methoxy and ethoxy group substitutions, respectively. Polarization curves also indicated that the studied biferrocenyl Schiff bases were mixed type anticorrosive materials. The inhibition of the aluminium alloy surface by biferrocenyl Schiff bases was evidenced through scanning electron microscopy (SEM) studies. Semi-empirical quantum mechanical studies revealed a correlation between corrosion inhibition efficiency and structural functionalities.

The anticorrosion activity of biferrocenyl Schiff bases on AA2219-T6 in acidic medium were studied using Tafel polarization, electrochemical impedance spectroscopy, weight loss analysis, FT-IR spectroscopy and scanning electron microscopic technique.  相似文献   

12.
13.
The inhibition performance of polyaniline (PANI)/chitosan (CTS) on metal corrosion in 0.5 M HCl was studied using electrochemical measurements, quantum chemical calculations and morphological observations. Potentiodynamic polarization measurements show that PANI/CTS acts essentially as a mixed-type inhibitor. The inhibition efficiency increases and corrosion rates decrease with increasing concentrations of PANI/CTS. The relationship between experimental inhibition efficiency and quantum chemical calculations that were developed to describe the corrosion inhibition process are discussed.

One-pot synthesis route for PANI/CTS preparation. The inhibition performance of PANI/CTS on metal corrosion in 0.5 M HCl was studied using electrochemical measurements and quantum chemical calculations.  相似文献   

14.
Herein, graphene oxide (GO) was chemically functionalized with polyethyleneimine (PEI) in a single step to obtain PEI-GO, which was characterized via FTIR spectroscopy, SEM, and TEM. Additionally, for the first time, PEI-GO was employed for the corrosion mitigation of carbon steel in a solution of 15% HCl. The corrosion performance of the inhibitor was evaluated by utilizing weight loss tests, electrochemical measurements with impedance analysis, electrochemical frequency modulation, and potentiodynamic polarization studies. Thorough surface analysis was performed using 3D profilometry and static water contact angle measurements. PEI-GO was adsorbed on the steel surface and showed mixed-type corrosion inhibition behavior with the prevalence of cathodic characteristics. Additionally, potassium iodide was incorporated in the acid solution as a synergistic agent to enhance the corrosion inhibition behavior of PEI-GO. The obtained results showed that PEI-GO alone provided a high corrosion inhibition efficiency of 88.24% at a temperature of 65 °C and in the presence of KI, it showed an I.E. of 95.77% due to their synergistic effect. These interesting results demonstrate that PEI-GO can act as a potential corrosion inhibitor in acidizing conditions. The DFT-based computational studies showed that the inhibitor functioned in both its neutral and protonated forms.

Herein, graphene oxide (GO) was chemically functionalized with polyethyleneimine (PEI) in a single step to obtain PEI-GO, which was characterized via FTIR spectroscopy, SEM, and TEM.  相似文献   

15.
Three novel Schiff bases, namely N-(4-((4-((phenylimino)methyl)phenoxy)methoxy)benzylidene)benzenamine (UA), N-(3-methoxy-4-((2-methoxy-4-((phenylimino)methyl)phenoxy)methoxy)benzylidene)benzenamine (UB), and N-(3-ethyl-4-((2-ethyl-4-((phenylimino)methyl)phenoxy)methoxy)benzylidene)benzenamine (UC), were synthesized and their structures were elucidated through diverse spectroscopic techniques such as FT-IR, GC-MS, 1H NMR and 13C NMR. The corrosion inhibition effect of these Schiff bases on aluminum alloy AA2219-T6 in acidic medium was explored using weight loss, Tafel polarization, and electrochemical impedance spectroscopy. Theoretical quantum chemical calculations using density functional theory were employed to determine the adsorption site. It was found that inhibition efficiencies increase with an increase in the inhibitor concentration. Tafel plots showed that these Schiff bases function as mixed inhibitors. Adsorption of the Schiff bases on aluminum followed the Langmuir adsorption isotherm and the value of showed a dominant chemical mechanism. FT-IR and SEM techniques were used to investigate the surface morphology. The compounds showed a substantial corrosion inhibition for aluminum alloy in 0.1 M HCl at 298 K. UB and UC exhibited superior anticorrosion efficiency compared to UA originating from the electron-donating methoxy and ethoxy group substitutions, respectively. There was found to be good correlation between molecular structure and inhibition efficiencies.

Novel Schiff bases characterized through spectroscopic techniques and used as anticorrosive agents for aluminium alloy acidic medium. Electrochemical techniques and DFT studies were used to study inhibition effect and molecular interactions.  相似文献   

16.
Mingjun Cui  Xia Li 《RSC advances》2021,11(35):21607
Novel nitrogen and sulfur co-doped carbon dots (N,S-CDs) were synthesized via a hydrothermal procedure using citric acid (CA) and thiourea (TU) as precursors, and the corresponding corrosion protection performance was first investigated for Q235 carbon steel in 1 M HCl solution. Experimental results indicated that N,S-CDs as mixed-type corrosion inhibitors could effectively prevent Q235 carbon steel from corrosion in 1 M HCl solution, and the corrosion inhibition efficiency was improved with the increase in N,S-CD concentration. The maximum value was achieved at 400 ppm of N,S-CDs at 25 °C, which was approximately 96.6%, 94.6% and 90.55%, according to the potentiodynamic polarization curves, EIS results and weight loss measurement, respectively. Additionally, with the temperature ranging from 25 to 55 °C, the inhibition efficiency obtained from the weight loss measurement was enhanced from 90.55% to 94.04%. Such superior inhibition effect was assigned to the physisorption and chemisorption of N,S-CDs on the Q235 carbon steel surface, which was also be confirmed by XPS analysis. The adsorption of N,S-CDs onto a steel substrate conformed to the Langmuir adsorption isotherm.

N,S-CDs as ecofriendly inhibitors effectively inhibit the acid corrosion of carbon steel with an inhibition efficiency of 96.6%.  相似文献   

17.
The inhibition efficiency of benzoic acid (C1), para-hydroxybenzoic acid (C2), and 3,4-dihydroxybenzoic acid (C3) towards enhancing the corrosion resistance of austenitic AISI 316 stainless steel (SS) has been evaluated in 0.5 M HCl using weight loss (WL), open circuit potential (OCP), potentiodynamic polarization method, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The results obtained from the different experimental techniques were consistent and showed that the inhibition efficiency of these inhibitors increased with the increase in concentration in this order C3 > C2 > C1. In addition, the results of the weight loss measurements showed that these inhibitors followed the Villamil isotherm. Quantum chemical calculations and Monte Carlo simulations have also been used for further insight into the adsorption mechanism of the inhibitor molecules on Fe (110). The quantum chemical parameters have been calculated by density functional theory (DFT) at the B3LYP level of theory with 6-31G+(2d,p) and 6-31G++(2d,p) basis sets in gas and aqueous phase. Parameters such as the lowest unoccupied (ELUMO) and highest occupied (EHOMO) molecular orbital energies, energy gap (ΔE), chemical hardness (η), softness (σ), electronegativity (χ), electrophilicity (ω), and nucleophilicity (ε) were calculated and showed the anti-corrosive properties of C1, C2 and C3. Moreover, theoretical vibrational spectra were calculated to exhibit the functional hydroxyl groups (OH) in the studied compounds. In agreement with the experimental data, the theoretical results showed that the order of inhibition efficiency was C3 > C2 > C1.

The corrosion inhibition efficiencies of benzoic acid (C1), para-hydroxybenzoic acid (C2), and 3,4-dihydroxybenzoic acid (C3) have been evaluated in 0.5 M HCl toward protecting AISI 316 stainless steel (SS).  相似文献   

18.
Sugarcane purple rind ethanolic extract (SPRE) was evaluated as an efficient corrosion inhibitor for carbon steel (C-steel) in 1 M HCl solution. Dynamic weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and frequency modulation (EFM) measurements were employed to evaluate the anticorrosive efficiency of SPRE, which was further validated by morphological and wettability analyses. The results of the weight loss tests showed that the inhibition efficiency (ηw) for C-steel in HCl solution increased with an increase in the concentration of SPRE. An increase in temperature moderately impaired the anticorrosive efficacy of SPRE. The maximum ηw of 96.2% was attained for C-steel in the inhibition system with 800 mg L−1 SPRE at 298 K. The polarization curves indicated that SPRE simultaneously suppressed the anodic and cathodic reactions for C-steel in HCl solution, which can be categorized as a mixed-type corrosion inhibitor with a predominant anodic effect. The corrosion current density (icorr-P) was monotonously reduced with an increase in the concentration of SPRE. The charge transfer resistance (Rct) was enhanced for C-steel in the inhibition solution with a restrained capacitive property due to the adsorption of SPRE. A high temperature caused partial desorption of SPRE on the C-steel surface and a slight increase in icorr-P and decrease in Rct. However, SPRE still fully maintained its morphology and wettability at 328 K. The electrochemical kinetics of C-steel in HCl solution without and with SPRE was also supported by EFM spectra. The adsorption of SPRE conformed to the Langmuir isotherm and increased the corrosion activation energy of C-steel. Complementing the experimental observations, calculations based on density functional theory indicated that the hydroxyl-substituted pyran moiety on the carthamin (CTM) and anthocyanin (ATC) constituents in SPRE hardly contributed to its reactive activity due to their adsorption processes. Therefore, CTM and ATC exhibited imperfect parallel adsorption on the Fe (100) plane according to the molecular dynamics simulation, while anthoxanthin (ATA) and catechinic acid (CCA) constituents exhibited a flat orientation on the iron surface.

The anticorrosive mechanism of extracted components from sugarcane purple rind for carbon steel in HCl solution is clarified by weight loss, electrochemical and theoretical (novel DFT calculation and molecular dynamics simulation) analyses.  相似文献   

19.
Corrosion of carbon steel is a major problem that destroys assists of industries and world steel installations; the importance of this work is to introduce new heterocyclic compounds as effective and low-cost corrosion inhibitors. Three compounds of carbohydrazide derivatives, namely: 5-amino-N′-((2-methoxynaphthalen-1-yl)methylene)isoxazole-4-carbohydrazide (H4), 2,4-diamino-N′-((2-methoxy-naphthalene-1-yl)methylene) pyrimidine-5-carbohydrazide (H5) and N′-((2-methoxynaphthalen-1-yl)methylene)-7,7-dimethyl-2,5-dioxo-4a,5,6,7,8,8a-hexahydro-2H-chromene-3-carbohydrazide (H6) were used to examine the efficacy of corrosion of carbon steel in 1 M hydrochloric acid solution. This corrosion efficacy was detected by utilizing various methods including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), weight loss measurements (WL), surface morphology analyses by atomic force microscopy (AFM), quantum chemical computations based on density functional theory (DFT) and molecular dynamics (MD) simulation. The results indicated that these compounds act as mixed type inhibitors i.e. reduce the corrosion rate of carbon steel due to the formation of a stable protective film on the metal surface and reduce the cathodic hydrogen evolution reaction. As confirmed from impedance, carbohydrazide derivatives molecules are adsorbed physically on metal surface with higher corrosion efficacy reached to (81.5–95.2%) at 20 × 10−6 M concentration at room temperature. Temkin isotherm model is the most acceptable one to describe the carbohydrazide derivative molecules adsorption on the surface of carbon steel. Protection mechanism was supported by quantum chemical analyses and Monte Carlo modeling techniques. The theoretical calculations support the experimental results obtained. This proves the use of carbohydrazide derivatives as a very effective inhibitors against the corrosion of carbon steel in acidic media.

Corrosion of carbon steel is a major problem that destroys assists of industries and world steel installations; the importance of this work is to introduce new heterocyclic compounds as effective and low-cost corrosion inhibitors.  相似文献   

20.
In this work, a water-soluble host–guest complex containing carboxymethylated beta-cyclodextrin (CM-β-CD) and an aniline trimer (AT) was synthesized. The application of AT–CM-β-CD as an inhibitor for alleviating the corrosion of Q235 carbon steel in 1 M HCl solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Results showed that the inhibition efficiency was significantly increased in the presence of AT–CM-β-CD, and the inhibition efficiency was up to 99.2% when the concentration of AT–CM-β-CD was 250 mg L−1. Field emission scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM) confirmed that the corrosion inhibitor had excellent corrosion inhibition effects due to the formation of an adsorption film on the surface of Q235 carbon steel. According to the data extracted from the Langmuir adsorption model, AT–CM-β-CD absorption involves both physisorption and chemisorption.

In this work, a water-soluble host–guest complex containing carboxymethylated beta-cyclodextrin (CM-β-CD) and an aniline trimer (AT) was synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号