首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
陈林  曹向群 《光学仪器》1991,13(2):25-29
圆光栅均匀性误差是圆光栅质量的重要指标之一,本文详细论述了圆光栅均匀性误差,并且提出了几种减小或消除这一误差的措施。  相似文献   

2.
设计并搭建了基于圆光栅角度编码器的精密减速器传动误差测试系统,对测试系统误差主要来源和规律进行了分析,设计并搭建了圆光栅角度编码器在位校准系统,测得了测试系统输入端和负载端角度编码器误差曲线.以某品牌RV-20E精密减速器为测试对象,测量其传动误差,然后通过圆光栅误差曲线对测量结果进行补偿,结果表明圆光栅角度编码器误差...  相似文献   

3.
精密转台角分度误差补偿   总被引:1,自引:0,他引:1  
为了修正精密转台中由圆光栅安装偏心、倾斜等引起的角分度误差,提出一种基于稀疏分解的角分度误差补偿方法。首先,分析了圆光栅安装偏心、倾斜等对精密转台角分度误差的影响。然后,根据圆光栅测角误差中不同阶次误差项的特性,结合稀疏分解思想与谐波分析建立了角分度误差补偿模型,对转台的角分度误差进行补偿。最后,搭建试验平台,采用提出的角分度误差补偿模型对精密转台角分度误差进行修正,验证该方法的有效性。试验结果表明:该方法能够将角分度精度提高2个数量级,对角分度误差最大值为90.85"的转台进行误差补偿后,能够使角定位误差的最大值减小到0.64"。采用该方法进行误差补偿后,能够显著提高角度定位精度,结果满足精密转台角位移的高精度测试要求。  相似文献   

4.
以关节测试系统为研究对象,为了避免系统中由于圆光栅编码盘偏心安装所引起的测量误差,基于Renishaw圆光栅安装要求,列举了引起偏心误差的结构参数,分析了各结构参数对圆光栅安装位姿的影响,通过分析和计算对各结构参数进行了误差分配。最后通过实例计算,验证了误差分配的合理性,得出在满足圆光栅安装条件的前提下,各结构参数所允许的误差范围。实现了通过控制各结构参数误差,确保圆光栅达到安装要求,避免偏心安装引起较大偏心误差。  相似文献   

5.
采用光栅式传动仪对一台Neles 型磨齿机展成链和分齿链精度进行了测量。应用一种改进的ARMA 谱估计法对所测得的展成链误差源进行了精确的诊断。同时采用信号处理技术成功的组合成传动链全综合误差,该项误差对研究传动链误差对被磨齿轮精度和工作性能的影响有着重要意义。一、前言在参考文献[1]中已对滚齿机差动链误差的测量与谱分析进行了探讨。本文将讨论Neles 型磨齿机传动链误差分析和诊断的方法。采用包括一个圆光栅、一个长光栅传感器(置于圆工作台上和与工作台平移平行的位置上),或两个圆光栅传感器(置于圆工作台和A 轮轴端上)的传动仪对一台Neles 型磨齿机的展成链和分齿链误差分别进行测量(图1)。同时研制成传动链误差谱估计和合成的信号处理软件。  相似文献   

6.
在实际工业应用中,环境温度变化是便携关节式坐标测量机中旋转轴系测角精度的主要误差源。为了消除环境温度对旋转轴系测角精度的影响,本文提出了一种新型圆光栅测角误差补偿方法,即建立含有环境温度影响因子的圆光栅测角误差补偿模型。利用谐波方法建立在特定温度下的圆光栅测角误差补偿模型,利用多项式方法建立谐波系数与环境温度之间的函数关系。最后,以14℃下的实验数据为验证数据,分别代入到传统谐波误差补偿模型和本文提出的模型中。实验结果表明,相对于传统谐波误差补偿模型,使用本文提出的模型补偿后圆光栅的测角精度提高4倍左右,修正后的残差峰峰值在2″以内,能够有效地补偿10~40℃下圆光栅的测角误差。  相似文献   

7.
孙秀照  雷贤卿  王笑一 《机电工程》2023,(10):1633-1640
误差补偿是提高圆光栅测角精度的常用手段。一些机床和精密仪器由于没有位置测量元件误差补偿功能,无法进行圆光栅的误差在线补偿。针对这一问题,提出了一种中继式的圆光栅测角误差实时补偿方法。首先,分析了圆光栅测角误差的补偿原理,建立了谐波拟合函数和圆光栅测角误差补偿模型;然后,进行了误差补偿模块的硬件选型,设计了以差分芯片为核心的信号转换电路,包括差分信号转单端信号电路和单端信号转差分信号电路,开发了误差补偿模块的嵌入式软件,将所设计的误差补偿模块插入到圆光栅的信号输出通道,建立了基于中继式误差补偿模块的试验系统;最后,采用雷尼绍校准装置采集了圆光栅的原始误差数据,使用谐波函数对测角误差数据进行了拟合,应用误差补偿模型,利用误差补偿硬件模块,对圆光栅测角误差进行了在线补偿试验。研究结果表明:对测角误差最大值为134.59″的圆光栅进行补偿后,其误差最大值可减小到12.62″,可见采用误差实时补偿方法可以显著提高圆光栅测角精度。  相似文献   

8.
圆光栅配合自准直仪测量主轴径向运动误差   总被引:1,自引:0,他引:1  
提出一种在线非接触式测量主轴径向回转误差的方法,为验证其准确性,搭建了主轴回转误差测量装置并进行了比对实验。该方法主要由圆光栅、读数头、环形平面镜以及激光自准直仪组成。首先,将圆光栅及环形平面镜安装在主轴上,并在双顶尖装置中将光栅安装偏心误差和平面镜与主轴不垂直误差进行标定。然后,将主轴安装在转台上,双读数头对径安装,自准直仪安装在平面镜下方。在主轴回转过程中,双读数头圆光栅可以测得主轴径向运动误差,自准直仪可以测得主轴径向运动误差方向上的偏摆角误差。最后,根据主轴上一点的径向运动误差及其在此方向上的偏摆角误差便可以计算出主轴轴向各个点的径向回转误差。设计了比对实验,结果表明在主轴径向回转误差为±12μm时,本方法与传统单向法比对残差在1μm以内。本文提出的主轴径向回转误差测量方法可以应用到精密主轴回转类装置中,实现在线检测主轴径向回转误差的目的。此外,该方法无需采用标准球,不受轴表面粗糙度、圆度等的影响。  相似文献   

9.
首先针对引起圆光栅测角系统示值误差的主要来源(光栅盘的偏心及倾斜)进行理论研究,同时提出光栅盘与转动轴的同轴安装方法;利用中国计量科学研究院的全圆连续角度标准装置(测量不确定度为0.05″)对待测圆光栅测角系统直接进行溯源性测试,避免了圆光栅安装过程和间接溯源性测试(多面棱体和光电自准直仪配合校准)过程中引入的仪器误差;其次利用谐波理论分析偏心和倾斜以及其它阶次误差在频谱中的分布;最后针对安装偏心和倾斜造成的误差,进行谐波补偿。实验结果表明,测角系统的示值误差从补偿前的100″减小到了10″,有效消除了光栅盘安装偏心、倾斜造成的稳定可复现的误差谐波成分。  相似文献   

10.
针对圆光栅制造工艺和安装误差引起的圆光栅测角误差标定问题,提出了一种基于最小二乘法的自适应分段多项式拟合方法。通过设计区间自适应增长策略,在限制各拟合点最大拟合误差的条件下,将整个拟合区间分段,针对不同拟合区间采取不同阶数多项式进行拟合。通过实验采集了某转台圆光栅的测角误差,用提出的拟合方法进行了实验验证。结果表明该拟合方法具有更高的拟合精度,拟合过程简单,易于软硬件实现。  相似文献   

11.
通过分析目前同轴度误差评定的方法及其不足,提出了一种基于MATLAB优化工具箱的同轴度评定方法,把同轴度误差评定转化为圆度误差评定,提高了运算速度和准确度。并分析了产生同轴度误差的因素提出了改进方法。  相似文献   

12.
本文对机器人手臂的误差和影响误差的因素作了分析,建立起机器人夹持器(手)的运动误差与各种原始误差的函数式,文章着重于推导作为误差传递函数的各种偏导数矩阵,得到了统一的表达式。这种形式特别适合电子计算机计算。文章最后讨论了误差补偿方法和导出了补偿计算的公式。  相似文献   

13.
夏链  汪晟  韩江  张魁榜  田晓青 《中国机械工程》2013,24(17):2306-2310
为提高数控插齿加工精度,需对其误差进行补偿。通过分析插齿机床的运动特点,建立了插齿机运动模型;基于机床误差运动学原理,推导出用齐次变换矩阵描述的刀具相对于工件的误差模型;基于小误差补偿运动假设和微分变换原理,对各轴运动副的误差补偿量与刀具相对于工件的位置及方向误差模型间存在的耦合关系进行了解耦,获得了影响插齿加工精度的各运动副位置或方向误差补偿量。  相似文献   

14.
介绍了在CZ45 0齿轮整体误差测量仪上利用极坐标法测量双联齿轮、插齿刀和剃齿刀的端面渐开线齿形的方法 ,从而扩展了CZ45 0的测量功能。  相似文献   

15.
数控机床几何误差建模及误差补偿的研究   总被引:3,自引:0,他引:3  
基于多体系统运动学理论,建立了一种通用的数控机床几何误差模型,该模型易于实现计算机自动编程,能够广泛的应用于各种不同类型的数控机床上。给出了实现误差补偿的算法和程序流程图,特别针对直线与圆弧的分段处理进行了研究,结出了分段方法及坐标求取方法。最后,以一台三轴立式加工中心为例,对其21项几何误差进行了辩识,通过实验验证了误差补偿的效果。  相似文献   

16.
本文针对数控加工中心之类机机床主轴的机械密封,提出一种设计模型和实现此模型CAD方法,从面的液膜压力,温度场和变形之间互相联系的变化过程,求得满足性能的最佳设计参数。  相似文献   

17.
机构误差分析方法缺乏通用性,无法形成计算机辅助误差分析软件。虽然计算机辅助结构件误差分析已经形成商业软件,但机构中包含相对运动,误差因素更复杂,因此结构误差分析软件不能直接用于机构误差分析。文中提出了一种嵌套的误差传递矩阵,用以描述机构误差源至末端通路上的误差传递情况,进而提高机构误差分析方法的通用性和自动化程度。  相似文献   

18.
基于虚拟仪器的自动测试系统在测试过程中不可避免地会产生误差,影响测试结果的精度。目前还没有针对虚拟测试仪器的完整的误差评价体系,文章以某基于虚拟仪器的自动测试系统为例,描述了如何分析误差来源,并根据误差来源进行误差的设计,使得测试系统能够满足系统测试精度要求;同时利用一种简单实用的误差校准方法,进一步提高系统的测量精度。  相似文献   

19.
数控机床误差补偿技术及应用热误差补偿技术   总被引:6,自引:2,他引:4  
热变形误差是影响机床定位精度的重要因素之一。文章在分析多体系统基本变换的基础上,建立了计及几何误差,载荷误差和热变形误差的机床空间综合误差计算模型。对XHFA2420加工中心的丝杠和滑枕系统的热变形误差进行了计算和补偿,实验结果表明热误差补偿量达65%以上。  相似文献   

20.
数控机床误差补偿技术及应用——几何误差补偿技术   总被引:13,自引:2,他引:11  
利用多体系统运动学理论,通过分析低序体阵列、变换矩阵和运动方程,在相邻体之间引入位置误差和位移误差,建立了机床空间定位误差通用计算模型。基于激光测量提出机床的21项几何误差参数辨识模型。在XH715加工中心上,对机床的空间几何误差进行理论计算,并进行补偿前后的对比实验,结果表明机床空间定位误差减小50%以上,同时也表明利用误差补偿技术提高机床加工精度是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号