首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
为考察羟基磷酸钙(HAP)诱导结晶对低磷污水中PO43--P的回收效果,以污水厂尾水为研究对象,采用方解石为晶种,首先全面对比了HAP诱导结晶与均相结晶的PO43--P去除效果,然后通过改变晶种粒径和投加量,研究了晶种对PO43--P回收的影响,并探讨了结晶反应条件对PO43--P回收和产物晶型的影响.结果表明:HAP诱导结晶除磷效果要优于均相结晶,当结晶体系pH不超过9.0且残余Ca2+为100 mg·L-1时,前者可将PO43--P浓度降至0.5 mg·L-1左右,后者则为5.0 mg·L-1左右.构晶离子的扩散过程是HAP诱导结晶的控速步骤,减小晶种粒径和增加晶种投加量有利于构晶离子的扩散,可提高结晶反应速率,进而提高HAP诱导结晶对低磷污水的适应性,使PO43--P回收率得到提高.对PO43--P浓度为1.0 mg·L-1的模拟废水,晶种投加量为10 g·L-1、粒径为45 μm、Ca2+投加量为50 mg·L-1和pH=9时,在10 min的反应时间内HAP诱导结晶可获得80%以上的PO43--P回收率,出水PO43--P和pH满足GB 3838—2002的Ⅱ类标准(0.1 mg·L-1).实验条件下,HAP诱导结晶产物晶型主要为HAP及其前驱物无定形态羟基磷酸钙(ACP),产物结晶度随着pH的提高和晶种粒径的减小而提高.  相似文献   

2.
采用厌氧发酵和冷冻微波联合处理剩余污泥并回收氮磷   总被引:1,自引:0,他引:1  
为了实现从剩余污泥中高品位回收鸟粪石(MAP,MgNH4PO4·6H2O),本研究考察了厌氧发酵、冷冻+微波两种污泥预处理方式促进污泥中氮、磷的释放及回收效果.试验结果表明:污泥厌氧发酵在温度30℃、pH=12、发酵时间4 d时,PO43--P和HN4+-N的最大释放量分别为224.50 mg·L-1(即7.24 mmol·L-1)和278.17 mg·L-1(即19.87 mmol·L-1),PO43--P物质的量浓度远小于HN4+-N物质的量浓度.冷冻+微波联合预处理在冷冻温度-20℃、冷冻时间48 h、微波初始pH=3、微波时间9 min时,PO43--P和HN4+-N的最大释放量分别为1011.84 mg·L-1(即32.64 mmol·L-1)和220.82 mg·L-1(即15.77 mmol·L-1),PO43--P物质的量浓度高于HN4+-N物质的量浓度.根据污泥上清液中的氮、磷含量,将厌氧发酵与冷冻+微波两种污泥预处理后的上清液按体积比1:9进行混合,使Mg:N:P物质的量比为1.6:1.4:1时,PO43--P的最高回收率为99.11%,HN4+-N的最高回收率为73.46%.X射线衍射(XRD)结果显示,回收的沉淀物主要为鸟粪石晶体.将两种污泥预处理后的上清液进行混合,有效地解决了污泥上清液中由于氮、磷比例失衡所导致的回收率下降的问题,从而实现以鸟粪石的形式高效回收剩余污泥中的氮、磷.  相似文献   

3.
针对首次分离得到的一株具有同步脱氮除磷新功能的热带假丝酵母(Candida tropicalis) PNY2013,通过生理及动力学特征,连续流运行操作及其在含糖类工业废水中的应用3个环节,探讨了不同碳源模式下PNY2013同步脱氮除磷的特性.结果表明:PNY2013以葡萄糖、乙醇及乙酸为唯一碳源时均生长良好,其最大比增长速率μmax分别为0.1327、0.1252及0.1115 h-1,其同步脱氮除磷率分别可达100%、80%、100%(NH4+-N)及93%、95%、98%(PO43--P).3种碳源下PNY2013同步脱氮除磷的最佳条件基本接近为:温度30℃,pH=8.0,溶解氧0~2 mg·L-1,C/N=200∶5左右.PNY2013同步脱氮除磷的长期连续运行条件下的实验进一步表明,以葡萄糖为碳源条件下,进水NH4+-N及PO43--P浓度分别达400及80 mg·L-1时,两者去除率均接近100%.与这种超强能力相比,以乙醇及乙酸为碳源条件下,进水NH4+-N及PO43--P浓度分别达100及20 mg·L-1时,两者的去除率也可达60%~80%(NH4+-N)及40%(PO43--P),显示出相当的同步脱氮除磷能力.在以模拟制糖废水、淀粉加工废水、啤酒废水、味精废水这4种典型含糖工业废水为碳源条件下,除淀粉加工废水外PNY2013均能有效去除COD、NH4+-N和PO43--P,其中,制糖、啤酒、制药废水中的COD去除率分别可达40%、89%、96%,NH4+-N去除率分别为85%、94%、76%,PO43--P去除率均为90%.即使在40000 mg·L-1(制糖)及12500 mg·L-1(啤酒)的高COD条件下,PNY2013也均具有稳定的NH4+-N和PO43--P去除效果,显示出良好的同步脱氮除磷应用前景.  相似文献   

4.
响应面法优化MAP沉淀去除回收尿液中磷的研究   总被引:4,自引:2,他引:2  
基于模拟尿液的组成特点,利用Box-Behnken Design实验及响应面法对磷酸铵镁(MAP)沉淀去除回收尿液磷过程中反应pH值、Mg2+与PO43-物质的量比(Mg/P比)及Ca2+与PO43-物质的量比(Ca/P比)3个重要影响因素(分别表示为X1X2X3)及各因素之间的交互式影响进行考察,并利用SEM、FTIR、ICP和XRD表征手段分析结晶沉淀组成和晶形特征.实验结果表明,回归方程中X1X2X3X1X3X2X3X12X22X32对磷去除率影响显著;当反应pH值和Mg/P比范围分别在8.5~9.5和1.0~1.2之间时,磷去除率响应值能达到99%.产物表征结果表明,模拟尿液中K+和Na+对结晶干扰较小;当Ca2+的浓度相对较低(Ca/P比小于0.25)时,沉淀中MAP的纯度高于85%,晶体形状大部分为斜方形;当Ca2+的浓度相对较高(Ca/P比大于0.25)时,沉淀中的MAP下降明显,晶体形状开始不规则,杂质增多;当模拟尿液中Ca/P比为0.5时,MAP纯度仅有约70%.  相似文献   

5.
外加磷提高生物预处理效果的试验研究   总被引:2,自引:0,他引:2  
利用国内研究较多的生物陶粒滤池预处理工艺,在我国北方某水库原水中添加微量的磷,考察磷对生物预处理的促进作用通过生物分析方法,发现在原水水样中添加50μg/L的PO43--P(NaH2PO4)后,可以促进原水中细菌的生长,BDOC也有所增加,证明了原水中磷对细菌生长的限制因子作用陶粒滤池的实际运行结果表明,对于本试验所用原水,添加25μg/L的PO43--P(H3PO4)后,生物陶粒滤池对水中CODMn的去除率平均提高4.7个百分点,UV254和TOC的去除率分别提高3.6和5.7个百分点.由此为提高生物预处理的运行效果提供了一个新的思路,也说明磷在饮用水中的作用需要引起重视.  相似文献   

6.
磷元素在饮用水生物处理中的限制因子作用   总被引:18,自引:3,他引:15  
应用细菌生长潜力(BGP)法,考察了磷元素在淮河流域某地面水厂饮用水生物处理工艺中的限制因子作用原水添加50μg·L-1KH2PO4-P后,BGP可以提高54%,添加其它无机元素和添加磷元素对BGP的影响没有显著差异;原水添加20mg·L-1C6H12O6对BGP的影响要小于添加50μg·L-1KH2PO4-P的影响;原水添加磷后生物滤池对CODMn的去除率比对照生物滤池提高了7.5%,其出水明显表现为碳限制型,对照生物滤池出水则为磷限制型.结果说明磷元素是该水厂饮用水生物处理的限制因子,且限制作用强于碳元素,可以通过外加磷源的方法提高饮用水生物处理工艺对有机物的去除效率.  相似文献   

7.
王鹏飞  郅蒙蒙  储昭升  崔冠楠 《环境科学》2020,41(12):5480-5487
为研究生物质粒径对负载MgO芦苇生物炭(MBC)去除水体中磷的速率和能力的影响,以0~0.5、1~2和6~8 mm这3种不同粒径的芦苇颗粒为原料、MgCl2为改性剂制备MBC,用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)等对MBC表征,开展MBC吸附溶液中磷酸盐(PO43--P)动力学和等温线实验以及实验数据模型拟合.结果表明,MBC对溶液中PO43--P的吸附速率随生物质粒径增大而增大,0~0.5、1~2和6~8 mm芦苇颗粒制备的MBC对PO43--P的吸附量在2 h内分别达到平衡吸附量的15.4%、25.8%和80.8%,而生物质粒径对MBC的PO43--P最大吸附量(249.0~254.7 mg·g-1)无明显影响.6~8 mm芦苇颗粒制备的MBC保留了较完整的芦苇细胞壁结构,且含有丰富的微孔和中孔,形成多层次、规则的、连通性好的孔隙结构.0~0.5 mm和1~2 mm芦苇颗粒制备的MBC孔隙结构较差,孔隙连通性受损,影响了磷酸根离子在MBC内部的扩散速率,限制了对磷的吸附速率.因此,以人工湿地收割的废弃植物芦苇为原料制备MBC用于去除水体中磷时,将芦苇破碎至6~8 mm即可,过度破碎会破坏MBC的孔隙结构,减小MBC对磷的去除速率.  相似文献   

8.
以污水处理厂剩余污泥为研究对象,污泥经酸/碱预处理(pH=3.0/pH=10.0)后,分别以FeOOH、FeCl3及Fe2O3为外加铁源,进行厌氧发酵,探究铁源对厌氧系统中蓝铁石晶体生成的影响.结果表明:FeCl3和FeOOH可以高效地被还原为Fe2+,其铁还原效率(EFe)最高为56.24%~80.10%,且酸处理效果优于碱处理(3.00%~13.31%),而Fe2O3EFe相对较低,最高分别为31.94%(pH=3.0)和50.1%(pH=10.0).FeOOH和Fe2O3的投加,可促进胞外聚合物(EPS)中蛋白质含量的提升,增强胞外电子传递能力,但Fe2O3因其结晶度高,阻碍了铁还原微生物对铁源的利用,导致铁还原效率低.上清液PO43-浓度、污泥Fe-P比例与EFe呈负相关,EFe越高则PO43-浓度、Fe-P比例越低.FeOOH组上清液PO43-浓度下降幅度最大,反应第9 d PO43-浓度最低,仅为对照组的10.30%(pH=3.0)和17.20%(pH=10.0),其次是FeCl3组(22.83%/27.87%),Fe2O3组最终剩余较多PO43-(65.02%/56.33%);FeOOH、FeCl3和Fe2O3酸/碱组的Fe-P比例分别为32.19%/21.20%、34.41%/23.09%和20.92%/11.99%.铁源的添加提高了污泥的磷回收率(Rp),并且酸预处理效果优于碱处理,其中FeCl3Rp最高,是对照组的2.91倍,其次是FeOOH组(2.63倍)和Fe2O3组(2.12倍).XRD分析表明,FeOOH和FeCl3酸/碱预处理组均生成了蓝铁石晶体.  相似文献   

9.
磷与水中细菌再生长的关系   总被引:14,自引:0,他引:14  
利用细菌再生长潜力(Bacterial Regrowth Potential,BRP)的微生物分析方法,研究了水中的磷对其生物稳定性的限制因子作用.试验测试水样为经过净水工艺处理后的出水,净水工艺处理的原水取自我国北方某水库.结果表明,在测试水样中添加50pg/L的PO43--P(NaH2PO4)后,水样的BRP增加了100%~235%.在水样中添加各种无机盐后得到的BRP同仅添加NaH2PO4得到的结果相差不大,而在水样中添加1mg/L的乙酸碳(NaAc)后BRP只增加了30%~40%,大大小于只添加磷的水样,这表明在该水样中磷是细菌生长的限制因子.本试验说明,有效地去除水中的磷可以作为限制饮用水中细菌再生长,提高饮用水生物稳定性的一个重要途径.  相似文献   

10.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

11.
磷酸铵镁同时脱氮除磷技术研究   总被引:4,自引:2,他引:2  
探讨了pH值,物质摩尔配比,反应时间,反应温度,物质浓度,陈化时间,沉淀剂加入方式等因素对MAP同时脱氮除磷效果的影响。确定了各影响因素的较佳值,并对各因素的影响机理进行了探讨。在兼顾处理液的含盐量尽量低,以及满足处理液中的磷含量<10mg/L,氨氮含量在20mg/L左右的条件下,优化出了处理氨氮浓度为0.1mol/L(1400mg/L)及磷酸盐为相应浓度的废水的最佳pH为9.5,最佳摩尔配比为n(Mg):n(P):n(N)=1.2:1.03:1.0。  相似文献   

12.
Laboratory-scale tests for magnesium ammonium phosphate(MAP)precipitation following urea hydrolysis of human urine were conducted using orthogonal experiment design.The effects of initial pH,temperature and the volumetric ratios of stale urine to fresh urine,on urea hydrolysis in urine were studied to determine the final hydrolysis time to recover most nitrogen from separated human urine by MAP.With a volumetric ratio of stale to fresh urine>10% and at temperature≥20℃,urea hydrolysis could be completed i...  相似文献   

13.
采用磷酸铵镁(MAP)沉淀法对高氨氮7-ACA综合废水进行了预处理试验研究,以Na2HPO4和MgCl2.6H2O作为沉淀剂,探讨了初始反应pH值、n(Mg2+):n(PO43-)/:n(NH4+)投配比及反应时间等因素对氨氮去除效果的影响。结合结晶物SEM分析,确定预处理的最佳工艺条件为:初始反应pH 9.0、n(Mg2+):n(PO43-):n(NH4+)投配比1.0:1.1:1和反应时间20 min。平行试验结果表明,在最佳工艺条件下,当进水氨氮浓度为1 020~1 190 mg/L时,处理后出水氨氮浓度为小于150.0 mg/L,氨氮去除率在85.0%以上,残磷量小于40.0 mg/L,为7-ACA综合废水的后续生化处理创造了有利条件。  相似文献   

14.
饮用水中磷与细菌再生长的关系   总被引:3,自引:0,他引:3  
采用改进的可同化有机碳(AOC)和微生物可利用磷(MAP)方法,针对T市J水厂水源水、处理工艺以及一条配水干管中磷对细菌生长的限制作用进行了研究.结果表明:①水源水与处理工艺中MAP较高(5~38μg/L),配水管网中MAP较低(<5μg/L),且管网水中的MAP随着管线的延长基本保持不变.②常规处理工艺能够有效地去除水中的MAP(去除率为34.0%~83.7%).③在水源水和处理工艺中,水样的AOCpotential<、sub>、AOCP与AOCnative没有显著差别,说明AOC是微生物生长繁殖的决定因素.该研究配水干管中,水样的AOCpotential、AOCP为AOCnative的2~8.7倍,磷成为细菌再生长的限制因子.  相似文献   

15.
Chemical precipitation to form magnesium ammonium phosphate (MAP) is an effective technology for recovering ammonium nitrogen (NH4 +-N). In the present research, we investigated the thermodynamic modeling of the PHREEQC program for NH4 +-N recovery to evaluate the effect of reaction factors on MAP precipitation. The case study of NH4 +-N recovery from coking wastewater was conducted to provide a comparison. Response surface methodology (RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions. Thermodynamic modeling indicated that the saturation index (SI) of MAP followed a polynomial function of pH. The SI of MAP increased logarithmically with the Mg2+/NH4 + molar ratio (Mg/N) and the initial NH4 +-N concentration (CN), respectively, while it decreased with an increase in Ca2+/NH4 + and CO3 2??/NH4 + molar ratios (Ca/N and CO3 2??/N), respectively. The trends for NH4 +-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions. The RSM analysis indicated that the factors including pH, Mg/N, CN, Ca/N, (Mg/N) (CO3 2??/N), (pH)2, (Mg/N)2, and (CN)2 were significant. Response surface plots were useful for understanding the interaction effects on NH4 +-N recovery.  相似文献   

16.
化学沉淀法回收污泥中氮磷的影响因素研究   总被引:1,自引:0,他引:1  
污水处理厂污泥上清液中富集着较高浓度溶解性的氮磷,将此部分氮磷形成磷酸盐沉淀(如磷酸氨镁、磷酸钙、磷酸铝等)加以回收利用,受到各种因素的影响.文章以正交试验得出的影响因素为基础,深入研究了pH、初始PO43--p的浓度、Mg/P和反应时间对某污水厂污泥上清液中磷酸氨镁沉淀法回收氮磷的影响.结果表明:pH是影响污泥上清液...  相似文献   

17.
针对低有机物高氨氮浓度的生活污水,经UASB处理后的厌氧废水,氮含量较高,磷基本未除去,处理出水效果欠佳的情况,提出磷酸铵铗沉淀法脱除生活污水中的磷以及部分氨氮。初步确定了影响磷酸铵镁沉淀反应因素为pH值,Mg^2+:PO4^3-:NH4^+,反应时间t。最优反应条件为:pH=8.5,Mg^2+:PO4^3-:NH4^+=1.2:1:1,反应时间t=1min。磷的去除率可高达94.0%,氨氮的去除率达71.5%,为低浓度的生活污水的后续生物处理创造了良好的条件。  相似文献   

18.
胡德秀  张艳  张聪 《中国环境科学》2019,39(4):1611-1618
探究乙二胺四乙酸(EDTA)的添加对剩余污泥厌氧过程中磷释放及后续鸟粪石(MAP)法磷回收的影响.根据EDTA添加量对污泥上清液中总磷(TP)、蛋白质、多糖、DNA和SCOD的影响确定了最优释磷条件,采用响应曲面法(RSM)构建MAP磷回收的二次多项式模型并验证了模型的有效性.结果表明:EDTA添加量为5mmol/L,厌氧5d时预处理效果最佳.污泥SCOD破解度(DD)和TP、DNA、蛋白质及多糖均有显著相关,其中TP相关性最强,皮尔逊相关系数为0.866.MAP磷回收的最佳工艺参数是:pH=9.5,n(Mg):n(P)=1.6,搅拌时间22min,此时磷回收率可达95.68%,形成晶体的主要成分为磷酸铵镁(MgNH4PO4·6H2O),纯度为79.19%.  相似文献   

19.
化学沉淀法去除稀土湿法冶炼废水中钙与高浓度氨氮研究   总被引:1,自引:0,他引:1  
离子型稀土湿法冶炼过程中会产生大量氨氮废水,由于废水中含有大量Ca2+,而Ca2+是影响磷酸铵镁沉淀法脱氮效率的重要因素.向废水中投入Na2CO3固体生成CaCO3沉淀物,去除废水中的Ca2+,再利用磷酸铵镁(MAP)沉淀法去除废水中的氨氮.实验采用响应面实验设计方法中的中心复合设计法,利用响应面分析法对磷酸铵镁沉淀法反应参数进行优化,得到最优反应条件及最优反应条件下沉淀产物.利用扫描电子显微镜(SEM)及X射线衍射(XRD)对最优反应条件下两种沉淀物进行分析.结果表明,当n(Ca2+)∶n(CO23-)=1∶1.05,搅拌速率为1 500 r.min-1,反应时间为30 min时,Ca2+去除率接近100%;对除钙后废水进行磷酸铵镁法脱氮处理的最优反应条件为:pH=9.03,n(Mg)∶n(N)=1.20,n(P)∶n(N)=1.1,反应时间为30 min,搅拌速率为1 000 r.min-1,氨氮去除率达到95.40%,剩余总磷浓度为5.65 mg.L-1;沉淀物分别为纯净的CaCO3及MgNH4PO4.6H2O.  相似文献   

20.
以CaO、MgO和白云石石灰(D-Lime)为晶种对模拟厌氧消化上清液进行磷回收试验,研究晶种投加量对磷去除效率的影响,分析试验反应动力学和产物表面形态。结果表明:磷浓度为0.645 mmol/L(ρ(P)=20 mg/L)、n(N)/n(P)为8:1、pH为7.80的模拟水中,投加一定量的CaO、MgO和D-Lime进行磷回收试验,磷的去除率在95%以上,试验反应过程符合准一级反应动力学。针对消化上清液中的高浓度常见离子CO32-,当c(CO32-)≥ 10 mmol/L时,其对CaO除磷具有明显抑制作用,而对D-Lime和MgO抑制作用有限。此外,投加晶种中含有Mg2+时会生成磷酸铵镁晶体(magnesium ammonium phosphate,MAP)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号