首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

2.
Surface geophysics and a priori information were employed to delineate the subsurface geology at Idi-oro in Abijo, Ibeju Lekki area of Lagos, Nigeria for foundation investigation purpose. Resistivity measurement was conducted using 1-D and 2-D resistivity probing techniques. The resistivity measurements were made with ABEM tetrameter model SAS 1000 system. The 1-D vertical electrical resistivity sounding data were obtained using the Schlumberger electrode array while the 2-D resistivity data were obtained using the dipole–dipole array. The interpreted results revealed three to five subsurface geological layers. This is made up of the top soil with resistivity values that vary from 132.4 to over 2,313.5 Ω?m and thickness values that range from 0.3 to 4.8 m, the fine sand with resistivity values that vary from 221.0 to 3,032.7 Ω?m and thickness values that range from 0.4 to 5.5 m, the medium sand with resistivity values that vary from 202.8 to 1,247.7 Ω?m and thickness values that range from 4.9 to 58.4 m. On the other hand, the clayey sand has the resistivity values that vary from 146.1 to 1,744.0 Ω?m and thickness values that vary from 2.2 to 26.3 m, while the coarse sand has resistivity values that vary from 238.3 to 14,313.9 Ω?m but with no thickness value because the current terminated in this layer. The resistivity data correlate well with borehole logs. On the whole, it is concluded that the investigated area has competent sand layer that can support medium to giant engineering structures with resistivity values that vary from 202 to 14,314 Ω?m and thickness values that vary from 0.8 to 58.4 m.  相似文献   

3.
The study area lies to the south of El-Dakhla Oasis in the central part of the western desert, Egypt. It is limited by the latitudes 24–25°?N and the longitudes 28–30°?E. The main purpose of this work is the investigation of the subsurface structure and the delineation of the main structural elements at different subsurface levels. This study aims also to estimate the basement depth, the basement relief, and consequently, the thickness of the sedimentary cover. The study is based on acquired aeromagnetic data prepared by "La Compagnie General De Géophysique" for the Egyptian General Petroleum Company and Conoco (1977), geological information and results of previous studies in the region. The study involves the analysis for the aeromagnetic data and generating of reduced to pole magnetic map from which different magnetic maps are calculated. The calculated maps are first vertical derivative map and downward continuation map at depth level 400 m. Trend analysis technique is used to define the fault pattern affecting the studied area at different subsurface levels. It is applied to the reduced to pole magnetic map, the first vertical derivative map, and the downward continuation map at depth level 400 m of the study area. All results obtained from the interpretation process were combined together to draw the general view of the subsurface structures of the area. The NE–SW, E–W, and N–S trends are important surface and subsurface (basement) structural trends. This is attributed to the rejuvenation of movements on these old (basement) tectonic trends after the deposition of the sedimentary cover. Basement depth calculation from the aeromagnetic data is achieved using different techniques. The applied techniques included natural spectral analysis and Euler deconvolution. The depth values obtained vary from 400 to 1,700 m.  相似文献   

4.
The research site is the whole landmass of the Federal College of Education, Zaria, seated on basement complex of north-central Nigeria. Direct current resistivity geophysical method was employed to characterise parameters such as the basement depth and topography, aquifer depth and thickness, weathered basement distribution as well as mapping of orientations of fractures and faults present in the premises using radial sounding technique. The conventional vertical electrical sounding (VES) Schlumberger array was carried out at 40 stations, and eight of which were radial stations. Radial sounding was used to establish resistivity anisotropy which gives clue for the choice of consistent VES profile direction used throughout the fieldwork. Results from the resistivity interpretation suggest three layers in most parts of the premises with some minor occurrence of two and four layers. The first layer (topsoil) has its thickness ranging between 3.5 and 14.0 m; second layer (weathered basement) thickness ranges between 9.0 and 36.5 m, while the third layer (fresh basement) is deepest (40.1 m) towards the eastern corner of the area. The aquifer depth ranges from 1.5 to 4.0 m with a thickness range of 5.0 to 14.0 m. The thickest aquifer occurs around the centre to the west in the area. Results from radial sounding show presence of resistivity anisotropy, an insight to fracturing and faulting; this is more pronounced around the west-central part of the premises.  相似文献   

5.
对海滩地下结构的认识是海岸带研究的一个重要方面,也是海滩保护和开发的基础。目前对于海滩的研究大多集中在表面动态变化监测和研究,而对于海滩内部结构和基底形态研究还非常有限。现有的钻探和探测手段一般只能研究表层砂体,难以探测到砂体的底部,无法建立海滩的整体结构模型,不利于分析砂的储量和研究海滩的演化。因此,需要一种探测手段,以便快速有效地开展砂体结构的大范围探测。本文把多尺度地震层析成像方法应用于海滩结构研究,以山东半岛东南部花岗岩石质海岸的一个典型海滩—青岛石老人海水浴场为例,对石老人海滩下方从地表到结晶基底的整体结构开展研究。通过采用新研制的重锤震源得到较高信噪比的地震数据,使用多尺度地震层析成像方法对海滩地下结构进行建模,建立了青岛石老人海水浴场海滩下方深达50 m的速度结构模型。所建立的速度结构模型与该区域已有的对砂体厚度的认识,以及海滩钻孔取样得到的柱状样品的砂粒度变化曲线吻合。该速度结构模型显示,测线下方砂体北厚南薄,在后滨的厚度约为15 m,而在前滨仅有5 m左右。我们推测,海滩下方的砂体中可能存在直立的岩石和未风化完全的岩石,海滩下方的不均匀风化作用导致其下方基底呈现下凹的形态,这种基底形态可能具有稳定砂体的作用。本文方法能够快速有效地构建海滩下方速度结构模型,并且可以方便地推广到其他海滩的结构探测,对于研究海滩结构、演化过程和沙滩保护具有重要意义。  相似文献   

6.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

7.
The integrated geophysical interpretation for the different geophysical tools such as resistivity and gravity is usually used to define the structural elements, stratigraphic units, groundwater potentiality, and depth to the basement rocks. In the present work, gravity and resistivity data were utilized for detecting the groundwater aquifer and structural elements, as well as the upper and lower surfaces of the subsurface basaltic sheet in an area located at the eastern side of Ismailia Canal, northeastern Greater Cairo, Egypt. Two hundred and ten gravity stations were measured using an Autograv instrument through a grid pattern of 50?×?50 m. The different required corrections were carried out, such as drift, elevation, tide, and latitude corrections. The final corrected data represented by the Bouguer anomaly map were filtered using high- and low-pass filters into regional and residual gravity anomaly maps. The resulting residual gravity anomaly map was used for gravity modeling to calculate the depths to the upper and lower surfaces of the basaltic sheet. The resulting gravity models indicated that the depths to the upper surface of the basaltic sheet are ranged between 26 and 314 m, where the shallower depths were found around the southern and eastern parts. The depths to the lower surface of the basaltic sheet are varied from 86 to 338 m, and the thickness of the basaltic sheet is ranged from 24 to 127 m, where the biggest thicknesses were found around the southern and northern parts of the study area. Forty-two vertical electrical soundings (VES) were carried out using Schlumberger configuration with AB/2 spacings ranged from 1.5 to 500 m. 1D quantitative interpretation was carried out through manual and analytical interpretations. The VES data were also inverted assuming a 3D resistivity distribution. The results from the 3D resistivity inversion indicated that the subsurface section consists of sand, sandstone, and sandy–clays of Miocene deposits overlying the basalts. Such basaltic features (of Oligocene age) are underlain by Gabal Ahmar Formation of Oligocene deposits, which are composed of sand and sandstone. Therefore, two aquifers were deduced in the area. The first is the Miocene aquifer (shallower) and the other is the Oligocene aquifer (deeper).  相似文献   

8.
The present study deals with processing and interpreting the potential gravity and magnetic data in order to locate promising sites for metallic mineral occurrences in the basement rocks of South Sinai. Two promising sites were anticipated by combining the geophysical results and the available geological information. Each site was profiled and interpreted to the nearly approximated subsurface feature model, and the geometrical parameters of the expected subsurface structures may form mineralized bodies such as depth, thickness, width, dipping, density contrast, and magnetic susceptibility contrast could be delineated. Detailed ground Very Low Frequency (VLF) and Vertical Magnetic Gradient (VMG) methods were carried out in the site A2, eight VLF and VMG anomalies were determined, and their depths were calculated.  相似文献   

9.
Passive seismic approaches, using a single-station, enable rapid, cost-effective and non-invasive estimates of the thickness of sedimentary rocks overlying crystalline basement. This approach was applied to estimate the Cenozoic and Cretaceous succession beneath the Nullarbor Plain in southeastern Western Australia. Passive seismic data acquired at the majority of the 94 sites show a single, strong resonance frequency peak between 0.4 and 0.6 Hz suggesting an impedance contrast of a single subsurface layer. Modelling these resonance frequencies against known stratigraphy at 12 drill holes shows that this impedance contrast corresponds to the contact of the base of the Cenozoic–Cretaceous sedimentary succession of the Eucla and Bight basins with the crystalline basement. Data from the remaining sites produced sediment thickness estimates ranging from only tens of metres near the western edge of the Nullarbor Plain to over 860 m near its southern margin. Near this margin, rapid thickening of the sedimentary cover is coincident with an interpreted paleosea-cliff or indicative of localised faulting. Beneath the Western Australian portion of the Nullarbor Plain the sedimentary cover is on average 320 m thick with the succession thinning gradually towards the margins of the basin. A passive seismic approach is thus seen as a useful screening tool for the mineral exploration industry in areas that are under cover allowing for better targeting and cost-reduction in greenfields exploration.  相似文献   

10.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

11.
The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°?C50°W, N10°?C20°W and N10°?C20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ??10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°?C50° east that is probably due to the Syrian Arc system. Finally, our results are extremely coincided with the previous stress directions derived from geological, seismological and tectonic analysis in northern Red Sea rift, Gulf of Suez and Sinai regions.  相似文献   

12.
South Sinai Governorate acts as one of the most vital regions in Egypt for its location and natural resources. This governorate has a special economic importance to increase the national income due to its tourism expansion and petroleum. The fresh water is transferred from Cairo through pipelines to cover the demands of local inhabitants in the north Sinai governorate and the capital city of south Sinai governorate. The groundwater exploration and exploitation in this area have a great importance to cover the need of water for the different activities (tourism, petroleum, and agriculture) and to achieve a maximum development in this region. Therefore, the present study deals with using the different geophysical exploration techniques (magnetic, geoelectrical resistivity and shallow refraction seismic) to detect the groundwater aquifer or aquifers in the area between latitudes 27°52′ and 28°05′?N and longitudes 33°55′ and 34°05′?E. in southwestern Sinai—Egypt. The main results of these tools are the maximum depth to the basement surface 180 m and structure elements which affected on this area are represented by a number of normal faults have a trends (NNW–SSE and ENE–WSW) making two grabens isolated by one horst. Tariff Sandstone bed recorded as water-bearing formation and the basement ridge gates in the gulf direction are not capable to pass the ground water from the study area to the Gulf of Suez. Finally, the best locations for drilling groundwater wells were selected from the decision map which generated by using the GIS technique.  相似文献   

13.
The observed aeromagnetic anomaly map of Southern High Plateaus provides general information about the magnetization variations that are associated with subsurface magnetic sources, but it does not bring clear information about all geological elements of the study area. In this work, we attempt, by analyzing these aeromagnetic data, to determine structures of Paleozoic basement that may indicate the presence of major deep-seated structures in this area. To better understand and outline the basement geological structures, two approaches have been performed. Such analysis includes application of a low-pass filtering and spectral analysis, which permits an enhanced visual interpretation of the magnetization sources and leads to a better knowledge of the geological structures especially basins or intrusive bodies. The results obtained show magnetic anomalies indicating geological features trending NE–SW. They also reveal two depths of magnetic sources in the area. The deeper sources range from 1074 to 4057 m and reflect the Paleozoic basement. However, the shallower sources range from 153 and 596 m reflecting magnetic sources shallower than the basement. The outcomes of this study suggest a new structure and will contribute to better understand the characteristics and organization of the basin as well as the improvement of the geological map of the area for hydrocarbon exploration.  相似文献   

14.
Barind Tract, located north western part of Bangladesh, is one of the most diversified physiographic units of the country. The surface water supply in this part is particularly limited, so the irrigation is almost entirely depends on groundwater. However, over exploitation indicates falling groundwater heads in this area. The objective of present study is to examine the nature of the aquifer system Barind Tract of Bangladesh in order to assess the sustainability of groundwater yield. Borehole lithology data were collected, processed and analyzed for this purpose. Representative panel diagram, 3-D stratigraphic and cross-sectional views were also prepared for necessary assessment of the variation of individual subsurface stratum in different locations. The study identified three subsurface geologic formations namely, a top clay layer, sand layer of different grain size and at the bottom an impermeable clay zone. Maps of formation thickness and index revealed that aquifer thickness is low in the north-western corner and in some places of middle of south-western corner. The thickness of sand formation in other places is recorded above 20 m. It is expect that the finding of the study will help groundwater resources development, planning and management in the area.  相似文献   

15.
Gravity modelling was carried out along five profiles that traverse the Eastern Cape Province of South Africa in order to determine the depositional surface and isochore thickness of the Ecca sediments.Gravity models of the subsurface rock density reveal that the Ecca Group has a maximum vertical thickness of about 3215 ± 160 m.The maximum depositional surface(elevation)above sea level for the Ecca sediments is about 500 m,whilst the depth below sea level reaches about10000 m.Correlation of the isochore thickness maps with the depositional surfaces shows that the sediments in the basement highs were subsided,deformed,eroded and deposited in the basement lows.The basement highs served as the source area(s) for the sediments in the basement lows,thus basement highs are characterized with thin sediment cover whilst the lows have thick sediment cover.  相似文献   

16.
The objective of this study was to assess the subsurface strata and groundwater situation of Olomoro, Nigeria using borehole logging and electrical resistivity techniques. The borehole logging consisting of resistivity and spontaneous potential logs were conducted by using the Johnson Keck logger on a drilled well in the study area. The electrical resistivity survey involving 17 vertical electrical soundings (VES) with a maximum current electrode spacing of 100 to 150 m was conducted using the Schlumberger electrode configuration. Analysis of the well cuttings revealed that the lithology of the subsurface consist of topsoil, clay, very fine sand, medium grain sand, coarse sand and very coarse sand. Results of the downhole logging also revealed that the mean electrical conductivity and the total dissolved solid of the groundwater was obtained as 390 μS/cm and 245 mg/cm3 respectively. These values are within the acceptable limit set by the Standard Organization of Nigeria (SON) for drinking water. The result of the vertical electrical sounding interpreted using the computer iterative modeling revealed the presence of four to five geoelectric layers which showed a close correlation with result from the lithology and downhole logging. Results further showed that the resistivity of the subsurface aquifer ranged between 1584 and 5420 Ωm while the aquifer depths varied between 27.8 and 39.3 m. Groundwater development of the area is suggested using the depth and resistivity maps provided in this study.  相似文献   

17.
The Jiza' basin is located in the eastern part of Yemen, trending generally in the E–W direction. It is filled with Middle Jurassic to recent sediments, which increase in thickness approximately from 3,000 m to more than 9,000 m. In this study, block-35 of this sedimentary basin is selected to detect the major subsurface geological and structural features characterizing this basin and controlling its hydrocarbon potentials. To achieve these goals, the available detailed gravity and magnetic data, scale 1:100,000, were intensively subjected to different kinds of processing and interpretation steps. Also, the available seismic reflection sections and deep wells data were used to confirm the interpretation. The results indicated three average depth levels; 12.5, 2.4, and 0.65 km for the deep, intermediate, and shallow gravity sources and 5.1 and 0.65 km for the deep and shallow magnetic sources. Accordingly, the residual and regional anomaly maps were constructed. These maps revealed a number of high and low structures (horsts and grabens and half grabens), ranging in depth from 0.5 km to less than 4.5 km and trending mainly in the ENE, NW, and NE directions. However, the analytical signal for both gravity and magnetic data also showed locations, dimensions, and approximate depths of the shallow and near surface anomaly sources. The interpretation of the gravity and magnetic anomalies in the area indicated that the NW, NNW, ENE, and NE trends characterize the shallow to deep gravity anomaly sources; however, the NE, NW, and NNE trends characterize the magnetic anomaly sources, mainly the basement. Two-dimensional geologic models were also constructed for three long gravity anomaly profiles that confirmed and tied with the available deep wells data and previously interpreted seismic sections. These models show the basement surface and the overlying sedimentary section as well as the associated faults.  相似文献   

18.
Sabkhas are dominant geomorphic features in eastern Saudi Arabia and are of geologic and economic significance. Seismic refraction method was used in the inland sabkha of Jayb Uwayyid to depict its general stratigraphy and determine velocities and thicknesses of the sabkha’s uppermost layers and the water table depth. Data were acquired using a reversed-refraction profile consisting of 48 receivers spaced at 5 m. Data processing included amplitude gain, band-pass filtering, and manual picking of first and second arrivals. Interpretation of the data shows three main layers. The first layer is a sandy layer having an average velocity and thickness of 600 m/s and 15 m, respectively. The second layer has an average velocity and thickness of 2,300 m/s and 113 m, respectively. The third layer has an average velocity of 3,850 m/s. The topmost part of the first layer is composed of a dry to partially saturated clean sand underlain by fully saturated clean sand. However, arrivals from the interface between the partially saturated and fully saturated sands were not recognizable in any shot record, which might be due to the gradual increase of saturation with depth. Arrivals from the second layer were always recognizable on all shot records as first arrivals. On the other hand, arrivals from the third layer were not recognizable on any shot record as first arrivals probably due to the limited extent of the profile relative to the depth of the third layer. Therefore, the velocity of the third layer was calculated by manually picking the second head wave arrival.  相似文献   

19.
Geological transition zones are noted to be problematic in groundwater potential and development, due to their erratic and complex nature as well as characteristic of the subsurface lithologies. There were several occurrences of reported borehole failures and dry wells in these zones in Nigeria as a result of very scanty information that could serve as database for studying its groundwater potential. This study was therefore designed to generate hydrogeophysical data that could serve as baseline information on the groundwater potential in the study. In addition, to also delineate various subsurface lithologies present. Electrical resistivity survey for geophysical investigation was carried out using vertical electrical sounding (VES) technique. A total of 150 VES stations were purposively probed using Schlumberger electrode array. The interpreted data were used to produce geoelectric subsurface lithologies and to draw the geological section across the entire area. Various subsurface lithologies with their resistivities (Ωm) were delineated for basement complex (BC), transition zone (TZ), and sedimentary terrain (ST). In BC were topsoil, weathered zone, and fresh bedrock and in TZ were topsoil, sandy, laterite/clay, dry sand, sandstone, and fresh bedrock delineated while in the ST, topsoil, lateritic and sandy clay, dry sand, and the sandstone were delineated. In conclusion, the groundwater potential of the study area is largely been affected by the topography and the nature/composition of the Abeokuta Group that underlie the sedimentary part of the study area and the presence of thick laterite/clay unit of the basement complex portion of the study area.  相似文献   

20.
The Wadi Nesryin gabbroic intrusion is part of the Neoproterozoic Pan-African basement cropping out in southern Western Sinai of Egypt. The intrusion comprises hornblende gabbro, pyroxene–hornblende gabbro, diorite and appinitic varieties. It exhibits chilled margins against the older rocks represented by fine-grained gabbro and dolerite and belongs to what is known throughout Egypt as the “younger gabbro suite”. Mineralogy, mineral chemistry and whole rock geochemistry indicate that these rocks were derived from tholeiitic magmas with minor calc-alkaline affinity. They have chemical signatures of subduction related arc rocks formed at an active convergent plate margin. They were formed by 15–30% of partial melting of a garnet lherzolite and to a minor extent of spinel-garnet lherzolite sources, modified by fluids related to a subducting slab. Pressure estimates using the amphibole geobarometer indicate that the gabbroic rocks crystallized at pressures between 2.8 and 5.6 kbar (average?=?4.3 kbar). Diorites record lower formation pressures between 1.8 and 3.7 kbar (average?=?3.0 kbar). The temperature estimates calculated by several geothermometers yielded crystallization temperatures ranging from 674°C to 961°C, with an average of about 817°C. The whole rock Rb–Sr isochron age of the Nesryin gabbroic intrusion is 617?±?19 Ma with initial 87Sr/86Sr?=?0.70322?±?0.00004. This age indicates that the mafic–ultramafic plutons in the Pan-African belt in southern Sinai belong to the Egyptian younger gabbros and not to the older metagabbro–diorite complexes or ophiolitic suites. The rocks have low 87Sr/86Sr initial ratios ranging from 0.703141 to 0.703338 and negative ? Sr ranging from ?6.34 to ?9.14. The initial 143Nd/144Nd ratios range from 0.511944 to 0.512145 with positive and high ? Nd values (1.93 to 5.86) reflecting a mantle contribution in their petrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号