首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
INTRODUCTION: The slow component of the delayed rectifier K+ current IKs modulates repolarization of the cardiac action potential (AP), and the loss of IKs is known to cause long QT1 (LQT1) syndrome by prolonging action potential duration (APD). In this study, we generated a guinea pig LQT1 syndrome model using the IKs blocker chromanol 293B and then assayed the electrophysiologic effects of the ATP-sensitive potassium channel IK,ATP opener nicorandil on this model. METHODS AND RESULTS: Transmembrane action potentials of perfused right ventricular papillary muscle preparations and both in vitro and in vivo ECGs of guinea pigs were recorded. Blockade of IKs by chromanol 293B (30 microM) prolonged the action potential duration at 90% repolarization (APD90) by 8.5% and QT interval by 16.5% of control values. In addition, proarrhythmic early afterdepolarizations (EADs) and ventricular fibrillation were observed. Venoinjection of chromanol 293B (1 mg/kg) revealed 10.9% QT prolongation. Nicorandil (5-30 microM) dose-dependently shortened APD90 under the control condition, whereas it reversed the AP prolongation effect of chromanol 293B by 7.4% at the 30 microM concentration. Moreover, nicorandil shortened QT intervals both in vitro and in vivo and displayed an inhibitory effect on EADs and ventricular fibrillation. CONCLUSION: The ATP-sensitive potassium channel opener nicorandil may be an effective drug in the therapy of LQT1 syndrome by shortening APD and the QT interval.  相似文献   

2.
INTRODUCTION: An early afterdepolarization (EAD)-induced triggered beat is thought to precipitate torsade de pointes (TdP) in the long QT syndrome (LQTS). Previous studies demonstrated the development of EAD activity and dispersion of repolarization under LQT2 (reduced I(Kr)) and LQT3 (augmented late I(Na)), but not LQT1 (reduced I(Ks)), conditions. The present study examines these electrophysiologic characteristics during I(Ks) block. METHODS AND RESULTS: Canine epicardial (Epi), M, and endocardial (Endo) tissues and Purkinje fibers isolated from the canine left ventricle were studied using standard microelectrode recording techniques. The I(Ks) blocker chromanol 293B (293B, 30 microM), produced a homogeneous rate-independent prolongation of action potential duration (APD) in Epi, M, and Endo, but little to no APD prolongation in Purkinje. Chromanol 293B 1 to 30 microM failed to induce EADs or delayed afterdepolarizations (DADs) in any of the four tissue types. Isoproterenol (ISO, 0.1 to 1.0 microM) in the presence of 293B 30 microM significantly prolonged the APD of the M cell (basic cycle length > or = 1 sec), abbreviated that of Purkinje, and caused little change in that of Epi and Endo. The combination of 293B 30 microM and ISO 0.2 microM did not induce EADs in any of the four tissue types, but produced DAD activity in 4 of 8 Epi, 7 of 10 M cells, and 3 of 8 Endo. CONCLUSION: Our results indicate that I(Ks) block alone or in combination with beta-adrenergic stimulation does not induce EADs in any of the four canine ventricular tissue types, but that the combination of the two induces DADs as well as accentuated dispersion of repolarization.  相似文献   

3.
OBJECTIVES: We examined the cellular and ionic mechanism for QT prolongation and subsequent Torsade de Pointes (TdP) and the effect of verapamil under conditions mimicking KCNQ1 (I(Ks) gene) defect linked to acquired long QT syndrome (LQTS). BACKGROUND: Agents with an I(Kr)-blocking effect often induce marked QT prolongation in patients with acquired LQTS. Previous reports demonstrated a relationship between subclinical mutations in cardiac K+ channel genes and a risk of drug-induced TdP. METHODS: Transmembrane action potentials from epicardial (EPI), midmyocardial (M), and endocardial (ENDO) cells were simultaneously recorded, together with a transmural electrocardiogram, at a basic cycle length of 2,000 ms in arterially perfused feline left ventricular preparations. RESULTS: The I(Kr) block (E-4031: 1 micromol/l) under control conditions (n = 5) prolonged the QT interval but neither increased transmural dispersion of repolarization (TDR) nor induced arrhythmias. However, the I(Kr) blocker under conditions with I(Ks) suppression by chromanol 293B 10 micromol/l mimicking the KCNQ1 defect (n = 10) preferentially prolonged action potential duration (APD) in EPI rather than M or ENDO, thereby dramatically increasing the QT interval and TDR. Spontaneous or epinephrine-induced early afterdepolarizations (EADs) were observed in EPI, and subsequent TdP occurred only under both I(Ks) and I(Kr) suppression. Verapamil (0.1 to 5.0 micromol/l) dose-dependently abbreviated APD in EPI more than in M and ENDO, thereby significantly decreasing the QT interval, TDR, and suppressing EADs and TdP. CONCLUSIONS: Subclinical I(Ks) dysfunction could be a risk of drug-induced TdP. Verapamil is effective in decreasing the QT interval and TDR and in suppressing EADs, thus preventing TdP in the model of acquired LQTS.  相似文献   

4.
Background In long QT syndrome (LQTS), prolongation of the QT–interval is associated with sudden cardiac death resulting from potentially life–threatening polymorphic tachycardia of the torsade de pointes (TdP) type. Experimental as well as clinical reports support the hypothesis that calcium channel blockers such as verapamil may be an appropriate therapeutic approach in LQTS. We investigated the electrophysiologic mechanism by which verapamil suppresses TdP, in a recently developed intact heart model of LQT3.Methods and results In 8 Langendorff–perfused rabbit hearts, veratridine (0.1 µM), an inhibitor of sodium channel inactivation, led to a marked increase in QT–interval and simultaneously recorded monophasic ventricular action potentials (MAPs) (p < 0.05) thereby mimicking LQT3. In bradycardic (AV–blocked) hearts, simultaneous recording of up to eight epi– and endocardial MAPs demonstrated a significant increase in total dispersion of repolarization (56%, p < 0.05) and reverse frequency–dependence. After lowering potassium concentration, veratridine reproducibly led to early afterdepolarizations (EADs) and TdP in 6 of 8 (75%) hearts. Additional infusion of verapamil (0.75 µM) suppressed EADs and consecutively TdP in all hearts. Verapamil significantly shortened endocardial but not epicardial MAPs which resulted in significant reduction of ventricular transmural dispersion of repolarization.Conclusions Verapamil is highly effective in preventing TdP via shortening of endocardial MAPs, reduction of left ventricular transmural dispersion of repolarization and suppression of EADs in an intact heart model of LQT3. These data suggest a possible therapeutic role of verapamil in the treatment of LQT3 patients.  相似文献   

5.
Sodium Channel Block in In Vitro Models of LQTS. Introduction: Recent clinical studies have reported a greater effectiveness of sodium channel block with mexiletine to abbreviate the QT interval in patients with the chromosome 3 variant (SCN5A, LQT3) of the long QT syndrome (LQTS) than those with the chromosome 7 form of the disease (HERG, LQT2), suggesting the possibility of gene-specific therapy for the two distinct forms of the congenital LQTS. Experimental studies using the arterially perfused left ventricular wedge preparation have confirmed these clinical observations on the QT interval but have gone on to further demonstrate a potent effect of mexiletine to reduce dispersion of repolarization and prevent torsades de pointes (TdP) in both LQT2 and LQT3 models. A differential action of sodium channel block on the three ventricular cell types is thought to mediate these actions of mexiletine. This study provides a test of this hypothesis by examining the effects of mexiletine in isolated canine ventricular epicardial, endocardial, and M region tissues under conditions that mimic the SCN5A and HERG gene defects. Methods and Results: We used standard microelectrode techniques to record transmembrane activity from endocardial, epicardial, mid-myocardial, and transmural strips isolated from the canine left ventricle, d-Sotalol, an Ikr blocker, was used to mimic the HERG defect (LQT2), and ATX-II, which increases late Na channel current, was used to mimic the SCN5A defect (LQT3). d-Sotalol (100 μM) preferentially prolonged the action potential of the mid-myocardial M cell (APD90, increased from 340 ± 65 to 623 ± 203 msec) as did ATX-II (10 to 20 nM; APD90, increased from 325 ± 51 to 580 ± 178 msec; basic cycle length = 2000 msec), thus causing a marked increase in transmural dispersion of repolarization (TDR). Mexiletine (2 to 20 μM) dose-dependently reversed the ATX-II-induced prolongation of APD90, in all three cell types. Mexiletine also reversed the d-sotalol-induced prolongation of the M cell action potential duration (APD), but bad little effect on the action potential of epicardium and endocardium. Due to its preferential effect to abbreviate the action potential of M cells, mexiletine reduced the dispersion of repolarization in both models. Low concentrations of mexiletine (5 to 10 μM) totally suppressed early afterdepolarization (EAD) and KAD-induced triggered activity in both models. Conclusions: Our results indicate that the actions of mexiletine are both cell and model specific, but that sodium channel block with mexiletine is effective in reducing transmural differences in APD and in abolishing triggered activity induced by d-sotalol and ATX-II. The data suggest that mexiletine's actions to reduce TDR and prevent the induction of spontaneous and programmed stimulation-induced TdP in these models are due to a preferential effect of the drug to abbreviate the APD of the M cell and to suppress the development of EADs. The data provide further support for the hypothesis that block of the late sodium current may be of value in the treatment of LQT2 as well as LQT3 and perhaps other congenital and acquired (drug-induced) forms of LQTS.  相似文献   

6.
OBJECTIVES: To define the cellular mechanisms responsible for the development of life-threatening arrhythmias in response to sympathetic activity in the congenital and acquired long QT syndromes (LCQTS). METHODS: Transmembrane action potentials (AP) from epicardial (EPI), M and endocardial (ENDO) cells and a transmural electrocardiogram were simultaneously recorded from an arterially perfused wedge of canine left ventricle. We examined the effect of beta-adrenergic agonists and antagonists on action potential duration (APD90), transmural dispersion of repolarization (TDR) and the development of Torsade de Pointes (TdP) in models of LQT1, LQT2 and LQT3 forms of LQTS. RESULTS: I(Ks) block with chromanol 293B (LQT1) homogeneously prolonged APD90 of the three cell types without increasing TDR. Addition of isoproterenol prolonged QT and APD90 of M but abbreviated that of EPI and ENDO, causing a persistent increase in TDR; Torsade de Pointes developed or could be induced only in the presence of isoproterenol. I(Kr) block with d-sotalol (LQT2) and augmentation of late I(Na) with ATX-II (LQT3) prolonged APD90 of M more than EPI and ENDO, causing increases in QT and TDR. TdP developed in the absence of isoproterenol. In LQT2 isoproterenol initially prolonged, then abbreviated, the APD90 of M but always abbreviated EPI, thus transiently increasing TDR and the incidence of TdP. In LQT3, isoproterenol always abbreviated APD90 of the three cell types, causing a persistent decrease in TDR and suppression of TdP. The arrhythmogenic as well as protective actions of isoproterenol were reversed by propranolol. CONCLUSIONS: Our data suggest that beta-adrenergic stimulation induces TdP by increasing transmural dispersion of repolarization in LQT1 and LQT2 but suppresses TdP by decreasing dispersion in LQT3. The data indicate that beta-blockers are protective in LQT1 and LQT2 but may facilitate TdP in LQT3.  相似文献   

7.
BACKGROUND: Congenital and acquired long QT syndrome (LQTS) are caused by abnormalities of ionic currents underlying ventricular repolarization. For a better understanding of the mechanisms by which functional electrical instability at the level of the whole heart leads to torsade de pointes (TdP), a novel model of LQT3 was developed and the role of transmural dispersion of repolarization for the development of proarrhythmia was evaluated. METHODS AND RESULTS: In 11 Langendorff-perfused rabbit hearts, veratridine (0.1-0.5 microM), an inhibitor of sodium channel inactivation, led to a concentration-dependent increase in QT-interval and simultaneously recorded monophasic ventricular action potentials (MAPs) (p<0.05) and thereby mimicked LQT3. Veratridine reproducibly induced early afterdepolarizations (EADs) and TdP after lowering potassium concentration. In bradycardic (AV-blocked) hearts, the increase in MAP duration showed marked regional differences. It was significantly more pronounced on the left endocardium as compared to left or right epicardium. This resulted in a significant increase in dispersion of repolarization (24% at 0.1 microM, 92% at 0.25 microM, 208% at 0.5 microM; p<0.01). Left ventricular transmural dispersion of repolarization increased significantly more than interventricular dispersion (104 to 33 ms at 0.5 microM veratridine; p<0.05). CONCLUSION: By inhibition of sodium channel inactivation, veratridine mimics LQT3 in this intact heart model. In bradycardic, hypokalemic hearts, it reproducibly induced EADs and TdP in the setting of significantly increased left ventricular transmural dispersion of repolarization. Based on these experimental data, reduction of transmural dispersion of repolarization may be considered an important target for the prevention of TdP in patients with LQT3.  相似文献   

8.
BACKGROUND: Long QT syndrome is associated with early after-depolarization (EAD) that may result in torsade de pointes (TdP). Interestingly, the corrected QT interval seems to be proportional to body mass across species under physiologic conditions. OBJECTIVE: The purpose of this study was to test whether recovery of L-type calcium current (I(Ca,L)), the primary charge carrier for EADs, from its inactivated state matches ventricular repolarization time and whether impairment of this relationship leads to development of EAD and TdP. METHODS: Transmembrane action potentials from the epicardium, endocardium, or subendocardium were recorded simultaneously with a transmural ECG in arterially perfused left ventricular wedges isolated from cow, dog, rabbit, and guinea pig hearts. I(Ca,L) recovery was examined using action potential stimulation in isolated left ventricular myocytes. RESULTS: The ventricular repolarization time (action potential duration at 90% repolarization [APD(90)]), ranging from 194.7 +/- 1.8 ms in guinea pig to 370.2 +/- 9.9 ms in cows, was linearly related to the thickness of the left ventricular wall among the species studied. The time constants (tau) of I(Ca,L) recovery were proportional to APD(90), making the ratios of tau to APD(90) fall into a relatively narrow range among these species despite markedly different ventricular repolarization time. Drugs with risk for TdP in humans were shown to impair this intrinsic balance by either prolongation of the repolarization time and/or acceleration of I(Ca,L) recovery, leading to the appearance of EADs capable of initiating TdP. CONCLUSION: An adequate balance between I(Ca,L) recovery and ventricular repolarization serves as a "physiologic stabilizer" of ventricular action potentials in repolarization phases.  相似文献   

9.
INTRODUCTION: Torsade de pointes (TdP), is often preceded by a short-long cycle length sequence. However, the causal relationship between the pause associated with a short-long cycle length sequence and TdP is not completely understood. This study tests the hypothesis that a pause enhances both dispersion of repolarization and EAD formation; however, EADs that form where APD is longest will be less likely to initiate TdP. METHODS AND RESULTS: We used optical mapping to measure transmural action potentials from the canine left ventricular wedge preparation. D-sotalol and ATX-II were used to mimic LQT2 and LQT3, respectively. The pause significantly enhanced mean APD (from 356 +/- 20 to 381 +/- 25 msec in LQT2, P < 0.05; from 609 +/- 92 to 675 +/- 98 msec in LQT3, P < 0.05) and transmural dispersion (from 35 +/- 9 to 46 +/- 11 msec in LQT2, P < 0.05; from 121 +/- 85 to 171 +/- 98 msec in LQT3, P < 0.05) compared to steady state pacing. Under LQT3 condition EADs, EAD-induced triggered activity, and TdP were more likely to occur following a pause. Interestingly, the triggered beat following a pause always broke through at the region of maximum local repolarization gradient. CONCLUSION: These data suggest that a pause accentuates transmural repolarization gradients and facilitates the formation of EADs and EAD-induced triggered activity. In contrast to our hypothesis, the findings of this study support the concept that M-cells (where APD is longest) can play an important role in both the origination of EAD-induced triggered activity and unidirectional block associated with TdP.  相似文献   

10.
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.  相似文献   

11.
Electrophysiologic Features of Torsades de Pointes:   总被引:3,自引:0,他引:3  
Torsades de Pointes in the Isolated Rabbit Heart. Introduction : The exact electrophysiologic mechanism of torsades de pointes (TdP) is under intense investigation. No isolated animal heart model of this particular arrhythmia exists.
Methods and Results : In isolated rabbit hearts, TdP was induced by means of bradyeardia in the presence of a high concentration of d-sotalol (10−4 M) and shortly after lowering the concentration of potassium and magnesium in the perfusate. Multiple simultaneous epicardial and endocardial monophasic action potentials (MAPs) and volume-conducted 12-lead ECGs were recorded. d-Sotalol prolonged repolarization and increased dispersion of ventricular repolarization compared to baseline recordings. With the onset of low potassium and magnesium concentrations, repolarization was further prolonged and dispersion of repolarization was further increased followed by the occurrence of early afterdepolariZations (EADs) in the majority of MAP recordings, i.e., at both endocardial and epicardial locations of both ventricles, upon increase of EAD amplitude, triggered arrhythmias with TdP of up to 42 heats ensued in 10 of 11 hearts studied. MAP duration at 90% repolarization (APD90), dispersion of APD90, and the incidence of EADs as well as dispersion of the QT interval and T wave area were significantly higher in heats triggering higemini, couplets, or runs of TdP.
Conclusion : TdP observed in this new isolated heart model was associated with markedly increased dispersion of ventricular repolarization and the occurrence of EADs in multiple locations of the heart. TdP is initiated when the amplitude of an EAD reaches threshold for initiation of the first beat of an episode.  相似文献   

12.
Introduction: Increased transmural dispersion of repolarization (TDR) contributes importantly to the development of torsades de pointes (TdP) in long QT syndrome (LQTS). Intercellular electrical coupling via gap junctions plays an important role in maintaining TDR in both normal and diseased hearts. This study examined the effects of antiarrhythmic peptide AAP10, a gap junction enhancer, on TDR and induction of TdP in a rabbit LQT3 model.
Methods and Results: An arterially perfused rabbit left ventricular preparation and sea anemone toxin II (ATX-II, 20 nM) were used to establish a LQT3 model. Transmural ECG as well as action potentials from both endocardium and epicardium were simultaneously recorded. Changes in nonphosphorylated connexin43 (Cx43) were measured by immunoblotting. Compared with the control group, the QT interval, TDR, early afterdepolariztion (EAD), R-on-T extrasystole, and TdP increased sharply with augmented nonphosphorylated Cx43 in the LQT3 group (P < 0.001 for both). Interestingly, compared with the LQT3 group, 500 nM AAP10 reduced QT interval, TDR (P < 0.001 for both), and prevented EAD, R-on-T extrasystole, and TdP (P = 0.003, P = 0.001, P = 0.02) with a parallel decrease in nonphosphorylated Cx43 in the presence of ATX-II (P < 0.001).
Conclusion: Gap junction enhancer AAP10 is capable of abbreviating the QT interval, reducing TDR, and suppressing TdP in a rabbit LQT3 model probably via its effect by preventing dephosphorylation of Cx43. These data suggest that increasing intercellular coupling may reduce TDR and, therefore, prevent TdP in LQTS.  相似文献   

13.
INTRODUCTION: Sodium pentobarbital is widely used for anesthesia in experimental studies as well as in clinics, and it is known to prevent the development of torsades de pointes (TdP) in in vivo models of the long QT syndrome (LQTS). METHODS AND RESULTS: This study examines the effects of pentobarbital on transmural dispersion of repolarization (TDR) and induction of TdP in arterially perfused canine left ventricular wedge preparations in which transmembrane action potentials were simultaneously recorded from epicardial, M, and endocardial regions using floating glass microelectrodes together with a transmural ECG. d-Sotalol and ATX-II were used to mimic the LQT2 and LQT3 forms of congenital LQTS. Both d-sotalol (100 micromol/L, n = 6) and ATX-II (20 nmol/L, n = 6) preferentially prolonged the action potential duration (APD90) of the M cell, thus increasing in the QT interval and TDR, and leading to the development of spontaneous and stimulation-induced TdP. In the absence and presence of d-sotalol, pentobarbital (10, 20, and 50 microg/mL) prolonged the APD90 of epicardial and endocardial cells, and, to a lesser extent, that of the M cell, thus prolonging the QT interval but reducing TDR. In the ATX-II model, the effects of pentobarbital on the QT interval and APD90 were biphasic: 10 microg/mL pentobarbital further prolonged APD90 of epicardial and endocardial cells more than that of the M cell; 20 to 50 microg/mL pentobarbital abbreviated the APD90 of epicardial and endocardial cells less than that of the M cell, thus abbreviating the QT interval and markedly reducing TDR. Twenty to 50 microg/mL pentobarbital totally suppressed spontaneous as well as stimulation-induced TdP in both models CONCLUSION: Our data indicate that pentobarbital reduces TDR in control and under conditions of congenital and acquired LQTS, and suggest that this mechanism may contribute to the ability of the anesthetic to prevent the development of spontaneous as well as stimulation-induced TdP under conditions mimicking LQT2, LQT3, and acquired (drug-induced) forms of the LQTS. The data also serve to illustrate that there are circumstances under which QT prolongation may not be arrhythmogenic.  相似文献   

14.
There is growing evidence that early afterdepolarizations (EADs) and EAD-induced triggered activity play a significant role in the clinical syndrome of long QTU and polymorphic ventricular tachyarrhythmias better known as Torsade de Pointes (TdP). This evidence is briefly examined in this report. The three steps required for the manifestation of EAD-induced triggered activity are: 1) critical prolongation of the repolarization phase, 2) a net depolarizing current carrying the charge for EAD, and 3) propagation of EADs which are locally generated to capture the entire heart resulting in one or more extrasystoles. The majority of pharmaceutical interventions associated with EADs could be grouped as acting predominantly through one of three different mechanisms 1) a delay of one or both potassium currents IK and Ikl, 2) an increase of transsarcolemmal calcium current (ICa), and 3) a delay of sodium current (INa) inactivation. Two experimental models in the dog utilized cesium and anthopleurin-A to produce bradycardia-dependent long QTU and polymorphic ventricular tachyarrhythmias that may resemble the clinical syndrome of long QTU and TdP. In both in vivo models, monophasic action potential (MAP) recordings demonstrated EADs-like deflections more prominent in endocardial than in epicardial recordings. The clinical syndrome of long QTU and TdP can be either congenital, idiopathic or acquired. Several observations suggest a common underlying mechanism with a greater predominance of adrenergic influence in the congenital or idiopathic long QTU syndrome. Adrenergic influence can act by enhancing the depolarizing current of EAD as well as EAD transmission in the intact heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Acceleration-Induced Early Afterdepolarizations. Introduction: Precipitation of torsades de pointes (TdP) has been shown to he associated with acceleration of heart rate in both experimental and clinical studies. To gain insight into the cellular mechanism(s) responsible for the initiation of acceleration-induced TdP, we studied the effect of acceleration of pacing rate in canine left ventricular epicardial, M region, endocardial, and Purkinje fiber preparations pretreated with E-4031, an IKr blocker known to induce the long QT syndrome and TdP. Methods and Results: Standard microelectrode techniques were used. E-4031 (1 to 2 μM) induced early afterdepolarization (EAD) activity in 31 of 36 M cell, 0 of 10 epicardial, 0 of 10 endocardial, and 9 of 12 Purkinje fiber preparations at basic cycle lengths (BCLs) ≥ 800 msec. In 30 of 36 M cells, sudden acceleration from a BCL range of 900 to 4,000 msec to a range of 500 to 1,500 msec induced transient EAD activity if none existed before or increased the amplitude of EADs if already present. Acceleration-induced augmentation of EAD activity was far less impressive and less readily demonstrable in Purkinje fibers (4/12). In M cells, appearance of EAD activity during acceleration usually was accompanied by an abbreviation of action potential duration (APD). Within discrete ranges of rates in the physiologic range, acceleration caused a transient prolongation of APD in 38% of M cells, whether or not a distinct EAD was generated. Acceleration produced still more dramatic APD prolongation and EADs in M cells after the BCL was returned to the original slow rate. Epicardium and endocardium APD showed little change immediately after acceleration. A decrease of BCL as small as 10% and, in some cases, a single premature heat could promote EAD activity and APD prolongation in some M cells. Ryanodine (1 μM, 10/10), flunarizine (10 μM, 3/6), and low Na (97 vs 129 mM, 5/5) abolished the acceleration-induced EAD activity and APD prolongation as well as the EAD activity observed at slow rates in M cells pretreated with E-4031. Conclusion: Our results suggest that acceleration from an initially slow rate or a single premature beat can induce or facilitate transient EAD activity and APD prolongation in canine ventricular M cell preparations pretreated with an IKr blocker via a mechanism linked to intracellular calcium loading. Our data provide evidence in support of an important contribution of electrogenic Na/Ca exchange current to this process. These acceleration-induced changes can result in the development of triggered activity as well as a marked dispersion of repolarization in ventricular myocardium and, thus, may contribute to the precipitation of TdP in patients with the congenital (HERG defect) and acquired (drug-induced) long QT syndrome.  相似文献   

16.
Early afterdepolarizations (EADs) are a type of triggered activity found in heart muscle. We used voltage-clamped sheep cardiac Purkinje fibers to examine the mechanism underlying EADs induced near action potential plateau voltages with the Ca2+ current agonist Bay K 8644 and the effect of several interventions known to suppress or enhance these EADs. Bay K 8644 produced an inward shift of the steady-state current-voltage relation near plateau voltages. Tetrodotoxin, lidocaine, verapamil, nitrendipine, and raising [K]o abolish EADs and shift the steady-state current-voltage relations outwardly. Using a two-pulse voltage-clamp protocol, an inward current transient was present at voltages where EADs were induced. The voltage-dependence of availability of the inward current transient and of EAD induction were similar. The time-dependence of recovery from inactivation of the inward current transient and of EAD amplitude were nearly identical. Without recovery of the inward current transient, EADs could not be elicited. The inward current transient was enhanced with Bay K 8644 and blocked by nitrendipine, but was not abolished by tetrodotoxin or replacement of [Na]o with an impermeant cation. These results support a hypothesis that the induction of EADs near action potential plateau voltages requires 1) a conditioning phase controlled by the sum of membrane currents present near the action potential plateau and characterized by lengthening and flattening of the plateau within a voltage range where, 2) recovery from inactivation and reactivation of L-type Ca2+ channels to carry the depolarizing charge can occur. Our results suggest an essential role for the L-type Ca2+ "window" current and provide a framework for understanding the role of several membrane currents in the induction and block of EADs.  相似文献   

17.
18.
BACKGROUND: Patients with genetic evidence of long QT syndromes type 1 and 2 (LQT1, associated with impaired outward potassium current I(Ks); and LQT2, associated with impaired outward potassium current I(Kr)) may have normal baseline QT intervals (phenotype/genotype discordance) and elude clinical detection. Beta-adrenergic stimulation may unmask occult LQT1, but no maneuver has consistently unmasked the LQT2 phenotype. OBJECTIVE: The purpose of this study was to test the repolarization reserve hypothesis (multiple challenges to repolarization are required to produce an abnormal phenotype), using subjects with LQT1 and LQT2 mutations but normal QT interval. We hypothesized that I(Kr) channel blockade would prolong the QT interval excessively in subjects with LQTS compared with controls and that I(Kr) channel blockade could unmask the abnormal LQTS phenotype in subjects with LQTS versus controls, as measured by the T peak-to-end interval (Tpe), a sensitive measure of abnormal repolarization. METHODS: Subjects with known LQT1 (n = 5) and LQT2 (n = 6) mutations but baseline QTc < or = 450 ms and age- and gender-matched controls (n = 22) received intravenous erythromycin (an I(Kr) blocker). RR, QRS, QT, and Tpe intervals were measured at baseline and after drug infusion. RESULTS: Erythromycin caused only modest QT prolongation in all groups. In contrast, Tpe was specifically prolonged by I(Kr) channel blockade in LQT2 subjects but not in LQT1 subjects or controls. CONCLUSION: Short-acting I(Kr) channel blockade, together with the sensitive repolarization measure Tpe, can unmask abnormal repolarization in LQT2. Our finding of abnormal repolarization in LQT2 subjects exposed to I(Kr) channel blockade supports the repolarization reserve hypothesis.  相似文献   

19.
OBJECTIVE: Congenital loss of function and drug-induced inhibition of the slowly-activating delayed-rectifier K(+) current (I(Ks)) cause impaired cardiac repolarization. beta-Adrenergic-receptor stimulation contributes to sympathetically-induced torsades de pointes (TdP). An in vivo model of long-QT1 (LQT1) syndrome and TdP in a species with I(Ks) characteristics relevant to man is lacking. We investigated the in vivo mechanisms of TdP in a novel canine model of drug-induced LQT1 syndrome. METHODS: Adult beagle dogs (n=30; F/M) were anesthetized with lofentanil (0.075 mg/kg i.v.) and etomidate (1.5 mg/kg/hour). ECGs, left- (LV) and right-ventricular (RV) monophasic action potentials (MAPs), and intracavitary pressures were recorded simultaneously. Infusion of the I(Ks) blocker HMR1556 (0.025-0.050 mg/kg/min) mimicked LQT1, and bolus injections of isoproterenol (1.25-5 microg/kg) reproducibly triggered TdP in 94% of dogs (defibrillated if necessary). RESULTS: Isoproterenol evoked paradoxical repolarization prolongation during heart rate accelerations. Beat-to-beat variability [QT, LV MAP duration (MAPD(90))] and spatial dispersion of repolarization (T(peak)-T(end) interval, endo-minus epicardial MAPD(90), LV-RVMAPD(90)) were significantly increased. Early afterdepolarizations occurred predominantly in the endocardium and not the epicardium. During isoproterenol, secondary systolic contractions (aftercontractions; peak 25+/-6 mm Hg) arose in the LV (not RV) when TdP ensued. Prevention of TdP by esmolol (1.25 mg/kg), verapamil (0.4 mg/kg) or mexiletine (5 mg/kg) was only successful when repolarization prolongation was contained and aftercontractions remained absent. CONCLUSIONS: beta-Adrenergic challenges trigger TdP in a reproducible manner in this model of drug-induced LQT1. Paradoxical prolongation and increased temporal and spatial dispersion of repolarization precipitate TdP. Incremental LV systolic aftercontractions precede TdP, suggesting abnormal cellular Ca(2+) handling contributes to the arrhythmogenic mechanism.  相似文献   

20.
Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号