首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y.S Li  M Spiegel 《Corrosion Science》2004,46(8):2009-2023
In this study, a mechanism to account for the corrosion of Fe-Al and NiAl alloys beneath molten ZnCl2-KCl at 400-450 °C in air is described. All the examined materials experienced enhanced corrosion, with the formation of porous surface scales or, in some cases, in combination with local attack of the matrix. Comparatively, the corrosion resistance of Fe-Al and NiAl alloys is markedly improved with increased Al contents, whereas different microstructural evolutions are observed for the two systems. For Fe-Al alloys, the outermost layer of corrosion product is a mixed region composed of a large amount of Fe2O3, KCl and metallic zinc particles, overlying a mixture of aluminium oxide and KCl that acts as the intermediate layer. Moreover, a multi-layered Fe2O3 scale is produced on the surface of the matrix. For Ni-Al alloys, however, the outermost layer is mainly a mixture of KCl, metallic Zn, and some alumina particles in local regions, but no nickel oxide is detected. Beneath this outer layer is an Al-rich oxide layer combined with KCl impurity, and then a metallic nickel bulk containing aluminium oxide precipitation, in contact with the matrix.  相似文献   

2.
Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.  相似文献   

3.
Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB–SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.  相似文献   

4.
采用?0.8 mm的1Cr15Ni27Mo1Ti3Al不锈钢丝绕制的弹簧,随产品进行功能试验后表面出现轻微棕红色锈斑,盐雾试验后弹簧表面出现严重棕红色锈斑。采用扫描电镜、金相显微镜观察弹簧表面微观形貌,用能谱检测锈蚀弹簧的化学成分,结果表明:弹簧锈蚀只发生在氧化膜层,弹簧基体未见腐蚀痕迹;弹簧表面的氧化膜主要形成于时效过程中。弹簧圆丝表面质量差,以及高温时效过程形成的氧化膜龟裂,使弹簧在潮湿环境下氧化膜缝隙吸收环境介质并发生反应,生成棕红色的锈蚀物。采用酸洗、喷砂、研磨等方式并不能完全去除弹簧时效过程形成的氧化膜,采用电解抛光能够在弹簧表面重新生成极薄的致密的氧化膜层而获得满意的抗腐蚀能力。提高弹簧圆丝的表面质量以及采用真空炉低温时效也能获得较满意的抗腐蚀能力。  相似文献   

5.
NiTi shape memory alloy has been modified by Nb implantation with different implantation parameters including incident dose and current. The surface morphology and chemical components are determined by atomic force microscopy (AFM), Auger Electron Spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The results show that Nb implantation leads to the formation of compact Nb2O5/TiO2 thin film about 30 nm in thickness on the surface of the NiTi alloy and decreases the surface concentration of Ni. A larger incident dose or incident current causes a higher surface roughness and a higher Nb content in the implantation layer of NiTi alloy. The nano-indentation measurements indicate the obvious reduction of both nano-hardness and Young's modulus of the Nb implanted NiTi alloy in the implantation layer and even in deeper NiTi matrix. The results of potentiodynamic polarization test show that the corrosion resistance of NiTi alloy in Hanks's solution has been evidently improved by Nb implantation. The NiTi alloy with a moderate implantation parameter of 1.5 × 1017 ions/cm2 and 2 mA exhibits the best corrosion resistance ability.  相似文献   

6.
In this paper the results of an experimental study concerning the effect of different surface treatments on NiTi shape memory alloy wires are presented. These treatments were conducted in order to improve the adhesion properties between the NiTi wires and an epoxy resin, acting as the matrix of a composite material.Mechanical and chemical surface treatments (immersion in acid and alkaline solutions), and different combinations of the above surface preparation procedures were studied.For the characterisation of the resulting alloy surface conditions electrochemical impedance spectroscopy, polarisation curves and potential versus time measurements were carried out.The alloy wire/epoxy matrix adhesion was characterised through pull out tests. The results proved that all adopted treatments can remarkably influence the electrochemical properties of the wires. The acid treatments favour the formation of a surface passivation layer, while the alkaline treatments are effective in producing a rougher surface morphology. Moreover, these basic treatments significantly reduce corrosion resistance of the alloys, another material property that has been incidentally investigated in the present context. The main effect of the mechanical surface treatment, consisting in abrading the alloy wires using an emery paper, was to increase the homogeneity of surface roughness.From the experimental results clear indications on the most promising surface treatments can be inferred.  相似文献   

7.
Influence of various surface treatments of a NiTi alloy on its surface chemistry and corrosion resistance was studied. NiTi (50.9 at.% Ni) alloy was subjected to mechanical polishing (MP), chemical etching (CHE) in an acidic bath, combination of mechanical polishing and oxidation at 530 °C/10 min in air (MPO) and combination of chemical etching and oxidation at 530 °C/10 min in air (CHEO). Scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry were used for the surface examination. Corrosion behavior was determined by measuring potentiodynamic curves and nickel release into a model physiological solution with pH = 2. It was shown that oxidation at 530 °C has a slightly retarding effect on the nickel release in the case of MP material. However, in the case of CHE material, oxidation negatively influences corrosion, i.e. it strongly accelerates the nickel release, despite that it produces a relatively thick Ni-depleted oxide layer. Chemical etching was evidenced to produce the best corrosion performance in terms of nickel release. By comparing the MP and MPO sample, it was evidenced that oxidation significantly enhances susceptibility to the pitting corrosion. The findings obtained in our work were discussed in relation to variations in the surface chemistry and structure after different treatments.  相似文献   

8.
研究了50CrVA钢油淬火弹簧的低温离子渗氮及低温气体氮碳共渗处理工艺,观察并分析了渗氮层组织形态及疲劳性能。结果表明,低温离子渗氮可显著提高弹簧的疲劳寿命。最后给出了表面强化弹簧的剪切疲劳模型。  相似文献   

9.
仇安  陈慧  宋婕  程学进  丁红燕  周广宏 《表面技术》2023,52(1):364-371, 420
目的 通过对NiTi合金表面进行激光熔凝处理,从而提高NiTi合金的耐腐蚀性能。方法 利用紫外激光器对NiTi合金进行表面熔凝处理,借助扫描电子显微镜(SEM)、光学显微镜(OM)、能量色散X射线光谱仪(EDX)和X射线衍射仪(XRD)等技术手段,研究了激光熔凝处理前后NiTi合金的表面显微组织、成分和相结构。测试了激光熔凝处理前后NiTi合金表面与模拟体液(SBF)的接触角、熔凝层的显微硬度等表面性能。通过全浸腐蚀试验和电化学测试,研究了熔凝层在SBF溶液中的生物腐蚀性能,并分析了腐蚀机理。结果 NiTi合金经过激光熔凝处理后,在合金的表层形成了厚度为90~150 μm的熔凝层,熔凝层主要由TiO2、β相以及少量的TiO相组成。合金表面的平均显微硬度提高了153~279HV,合金的表面接触角增大,由亲水性转为疏水性。相较于未处理的样品,熔凝处理后的样品在SBF溶液中的腐蚀电位分别正移了435 mV和413 mV,腐蚀电流密度分别下降了83%、62%左右。熔凝处理后的样品在SBF溶液浸泡168 h后,SBF溶液中的Ni2+浓度下降了约1/3。结论 以适当的激光加工参数对NiTi合金进行激光熔凝处理,可在NiTi合金表面形成致密的氧化膜,这层氧化膜和熔凝层可以有效地抑制NiTi合金在SBF溶液中的点腐蚀行为。  相似文献   

10.
Copper tubes used in air-conditioners and refrigerators often fail due to ant nest corrosion (ANC) in formic acid environment. In this paper, corrosion behavior and corrosion mechanisms of copper tubes in formic acid (HCOOH) were analyzed by vapor corrosion tests, optical microscopy (OM), scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS). The effects of the surface condition on ANC of copper tube were also investigated. Results showed that ANC of copper tube was a spontaneous process. The surface integrity of copper tube surface oxide layer is not the decisive factor of ANC. ANC originated from the dissolution of the surface oxide layer in HCOOH, which exposed fresh copper matrix. ANC is a special electrochemical corrosion, where the copper matrix acts as an anode and the undissolved surface oxide layer acts as a cathode due to the potential difference. The accumulation of corrosion products consisting of Cu(HCOO)2 and Cu2O can produce a wedge effect and generate many microcracks until to penetrate the copper tube wall. These findings would provide a deep understanding of the corrosion behavior of copper and copper alloys.  相似文献   

11.
A new oxidation treatment (OT) for NiTi Shape Memory Alloys used in biomedical applications has been developed in a previous work to reduce Ni surface concentration and, consequently, decrease Ni ions release into the exterior medium. This OT treatment is expected to minimize adverse and toxic reactions associated to Ni ions. However, in order to assess the biocompatibility of a metallic material, its corrosion resistance has to be evaluated.In this work, the electrochemical behaviour of NiTi surfaces oxidized by the new OT treatment was compared to untreated NiTi surfaces (NT). For this purpose, tests of open-circuit potential and cyclic voltammetry were performed at 37 °C in a Hanks Balance Salt Solution.A significant increase of the corrosion (Ecorr) and breakdown (Eb) potentials was observed for OT surfaces, in comparison with NT surfaces. Moreover, the qualitative potentiodynamic behaviour of OT NiTi and Ti surfaces are similar. This observation suggests that the OT treatment leads to the formation of an oxide on NiTi surface that has similar structure and electrochemical property to native Ti oxide. This new oxidation treatment is efficient to protect NiTi alloys from electrochemical degradation and, therefore, it may be an excellent candidate for biomedical applications.  相似文献   

12.
熔融氯化盐是下一代聚光式太阳能热发电站(第3代CSP)候选传热和储热介质,含MgCl2的熔融氯化盐对金属传热管道和储热容器腐蚀后在其表面形成MgO,MgO对管道耐腐蚀性能影响尚不清楚。通过对比碳钢和3种Fe-Cr-Ni合金在固态(345 ℃)和熔融NaCl-MgCl2(445和545 ℃)中的腐蚀行为,分析了MgO对4种试样在不同温度下的腐蚀行为机理。结果表明,在固态NaCl-MgCl2中,碳钢表面MgO壳致密且连续,可以保护试样免受腐蚀。在熔融NaCl-MgCl2中,4种试样表面也生成了致密的MgO壳,但它因热应力作用而开裂和剥落,熔融盐沿着氧化膜裂纹渗入MgO/基体界面,发生化学-电化学联合腐蚀反应,不能保护试样免受该熔盐腐蚀。  相似文献   

13.
In this study, corrosion behaviour of porous NiTi modified by plasma sprayed alumina coating has been investigated. Scanning electron microscopy and X-ray diffraction techniques were applied for the morphology and microstructure characterisation, while linear sweep voltammetry and electrochemical impedance spectroscopy were used for investigation of corrosion behaviour of coated and uncoated NiTi specimens. Induced couple plasma was conducted to measure ion release of the specimens in simulated body fluid at 37°C. The plasma sprayed Al2O3 coating on the porous NiTi improved the surface characteristics for biomedical applications. The alumina coating significantly hampered Ni ion release from the surface. In spite of slight decrease in corrosion resistance of the coated specimens, the corrosion mechanism changed from pitting to general corrosion. The breakdown phenomenon was not detected in the coated specimens, as well. Overall, it can be concluded the longevity of the coated specimen in the simulated biological system was enhanced, comparing to bare NiTi specimens.  相似文献   

14.
考察冠状动脉支架的应用发展,综述了国内外对支 架用金属材料在腐蚀领域的研究和发展动向.  相似文献   

15.
The present study explored the in-situ deposition of hard and adherent nanocrystalline protective coatings on NiTi/PZT/TiOx thin film heterostructure prepared by dc/rf magnetron sputtering. Protective layers (AlN, CrN and TiCrN) of approximate thickness (~ 200 nm) were used to improve the surface, mechanical and corrosion properties of NiTi/PZT/TiOx heterostructure without sacrificing the shape memory effect and ferroelectricity of the NiTi and PZT layers, respectively. The influence of the protective layer on structural, electrical and mechanical properties of NiTi/PZT/TiOx heterostructure was systematically investigated and the results were compared. Nanoindentation studies were performed at room temperature to determine the hardness and reduced modulus. The surface modified NiTi/PZT/TiOx heterostructures were found to exhibit high hardness, high elastic modulus and thereby better wear resistance as compared to pure NiTi/PZT/TiOx films. From the results of potentiodynamic polarization test conducted in 1 M NaCl solution, the CrTiN coated NiTi/PZT/TiOx heterostructure showed the best corrosion resistance with the lowest corrosion current density (1.52 × 10? 8 A cm? 2) and the highest protective efficiency (96.8%). The results presented here prove the potential of a surface modified NiTi/PZT/TiOx heterostructure to be used in various microelectromechanical (MEMS) applications.  相似文献   

16.
Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys.The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied.Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system.Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed.Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.  相似文献   

17.
航空航天铝合金腐蚀疲劳研究进展   总被引:1,自引:0,他引:1  
铝合金因具有高的比强度、比模量,好的加工性能及焊接性能,在航空航天领域应用广泛.而腐蚀疲劳是造成航空航天材料失效的重要原因之一,因其危害性高、破坏性强且难以提前预测等特点,受到了广泛关注.铝合金腐蚀疲劳问题一直是飞机日历寿命研究中的重点问题,随着可重复使用航天器理念的提出,多次空天往返和地面修复过程也使腐蚀疲劳问题在可重用航天器上不可忽视.综述了近年来航空航天铝合金腐蚀疲劳的研究现状,从航空铝合金腐蚀疲劳机理的角度,归纳了腐蚀疲劳裂纹萌生和扩展机制.从腐蚀疲劳环境模拟和腐蚀环境等效两方面,介绍了目前主要的实验室腐蚀疲劳试验技术.分别从材料因素、环境因素和力学因素,分析对腐蚀疲劳裂纹扩展及寿命的影响.重点关注了腐蚀疲劳交替形式下疲劳寿命的特点.提出了在多因素共同影响下的腐蚀疲劳裂纹扩展、损伤演化和寿命预测,以及加速腐蚀环境的当量等效.试验与模拟的有机结合,是今后铝合金腐蚀疲劳的重要发展方向.  相似文献   

18.
This article addresses the characteristics of commercially pure titanium (CP-Ti) subjected to thermal oxidation in air at 650?°C for 48?h and its corrosion behavior in 0.1 and 4?M HCl and HNO3 mediums. Thermal oxidation of CP-Ti leads to the formation of thick oxide scales (~20???m) throughout its surface without any spallation. The oxide layer consists of rutile- and oxygen-diffused titanium as predominant phases with a hardness of 679?±?43?HV1.96. Electrochemical studies reveal that the thermally oxidized CP-Ti offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 mediums. The uniform surface coverage and compactness of the oxide layer provide an effective barrier toward corrosion of CP-Ti. The study concludes that thermal oxidation is an effective approach to engineer the surface of CP-Ti so as to increase its corrosion resistance in HCl and HNO3 mediums.  相似文献   

19.
Laser surface alloying technique was applied to fabricate a metallic porous coating on a solid NiTi shape memory alloy. By laser surface alloying a 40%TiH2-60%NiTi powder mixture on the surface of NiTi alloy using optimized laser process parameters, a porous but crack-free NiTi layer can be fabricated on the NiTi substrate. The porous coating is metallurgically bonded to the substrate NiTi alloy. The pores are uniformly distributed and are interconnected with each other in the coating. An average pore size of less than 10μm is achieved. The Ni content of the porous layer is much less than that of the original NiTi surface. The existence of the porous coating on the NiTi alloy causes a 37% reduction of the tensile strength and 55% reduction of the strain as compared with the NiTi alloy. Possible biomedical or other applications for this porous surface with good mechanical strength provided by the substrate are prospective.  相似文献   

20.
The characteristics of Ti6Al4V alloy subjected to thermal oxidation in air atmosphere at 650 °C for 48 h and its corrosion behavior in 0.1 and 4 M HCl and HNO3 medium are addressed. When compared to the naturally formed oxide layer (~4–6 nm), a relatively thicker oxide scale (~7 µm) is formed throughout the surface of Ti6Al4V alloy after thermal oxidation. XRD pattern disclose the formation of the rutile and oxygen‐diffused titanium as the predominant phases. A significant improvement in the hardness (from 324 ± 8 to 985 ± 40 HV0.25) is observed due to the formation of hard oxide layer on the surface followed by the presence of an oxygen diffusion zone beneath it. Electrochemical studies reveal that the thermally oxidized Ti6Al4V alloy offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 medium. The uniform surface coverage, compactness and thickness of the oxide layer provide an effective barrier towards corrosion of the Ti6Al4V alloy. The study concludes that thermal oxidation is an effective approach to engineer the surface of Ti6Al4V alloy to increase its corrosion resistance in HCl and HNO3 medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号