首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为研究冲击荷载下岩石–钢纤维混凝土复合层抗压性能,利用分离式霍普金森压杆对岩石、钢纤维混凝土和岩石–钢纤维混凝土复合层试件进行了6种应变率下的动态压缩性能试验,并与各类试件的静态抗压强度进行对比分析。结果表明钢纤维混凝土可以有效增强复合层的静态和动态抗压强度,岩石–钢纤维混凝土复合层的动态抗压强度、耗散能和动态强度增长因子(DIF)均具有显著的应变率效应;在相近应变率下复合层的动态抗压强度和耗散能均随钢纤维掺量增大而增大,当钢纤维掺量为80 kg/m~3时复合层的动态抗压强度和耗散能比无钢纤维时最大增幅分别为30.1%和53.9%;钢纤维掺量不大于60kg/m~3可以有效增大复合层的DIF。复合层试件的损伤特征随应变率增大分为4种类型,即混凝土层出现周边张应变破坏、裂纹贯穿复合层、留芯破坏和整体破碎。岩石–钢纤维混凝土复合层的动态力学性能可以为支护结构在冲击荷载下的作用机制提供研究基础。  相似文献   

2.
以废弃钢渣为粗骨料制备补偿收缩钢渣混凝土试件,并对其进行抗压强度、弹性模量及泊松比试验,分析了水灰比对补偿收缩钢渣混凝土试件破坏形态、抗压强度、变形及应力-应变关系的影响.结果表明:补偿收缩钢渣混凝土试件破坏形态与普通混凝土相似,但前者出现裂缝时间较晚,裂缝发展速度较快,峰值应变较小;随着水灰比的减小,补偿收缩钢渣混凝土试件的抗压强度逐渐增大,弹性模量先增后减;补偿收缩钢渣混凝土试件的变形、应变和弹性模量均小于普通混凝土,泊松比是普通混凝土的2~3倍.由于补偿收缩钢渣混凝土内部含有的缺陷和空隙较少,其应力-应变关系曲线的线性阶段较长,曲线反弯点不明显.基于补偿收缩钢渣混凝土试验结果,提出了补偿收缩钢渣混凝土峰值应力、峰值应变、弹性模量和泊松比的计算方法,建立了补偿收缩钢渣混凝土应力-应变关系模型,此模型计算结果与试验结果吻合较好.  相似文献   

3.
为解决在含水复杂条件下,高应变率荷载作用对混凝土动态力学性能的影响问题,利用含水率控制法与霍普金森压杆(SHPB)试验系统,对不同含水率下混凝土试样开展动态单轴压缩试验,探究试样的动态应力-应变曲线、抗压强度、动弹模及峰值应变的变化规律,并对其宏观破坏形态进行分析。研究表明:随着含水率增大,混凝土试样的动弹模与抗压强度减小,峰值应变增大,破碎程度加剧;随着应变率增大,试样的动弹模及抗压强度明显增大,而动态峰值应变变化较小,破坏程度增加,试样破坏类型由拉伸破坏向压剪破坏转变。这说明含水率增大会使混凝土的动态力学性能减弱,而增大加载应变率可提高试样动态抗压性能,加剧混凝土材料的破坏程度。在实际混凝土工程中,应合理设置排水结构减少水对混凝土的侵蚀作用,并且可以设计适宜加载应变率控制混凝土结构的变形与破坏程度。  相似文献   

4.
利用刚性辅助装置测试C100超高强的素混凝土和纤维混凝土的应力-应变曲线,同时对长龄期的C100超高强混凝土抗压强度、静压力弹性模量等力学性能的发展趋势进行研究。试验结果表明C100超高强混凝土应力-应变曲线采用刚性辅助装置测试是比较便捷和有效的试验方法,高强混凝土应力应变全曲线显示当混凝土所受荷载达到最大时,混凝土的破坏具有突变性,应力应变曲线没有明显的缓冲阶段,只有上升阶段和下降阶段两个过程。另外,钢纤维超高强混凝土应力应变曲线的变化规律也基本一致,但钢纤维的掺加能够使混凝土的在荷载作用下的应变得变化具有更加稳定和平缓的特点,达到破坏突变点后应力应变曲线平稳下降,说明钢纤维能够明显的改善高强混凝土的脆性。同时,水胶比为0.18的超高强混凝土,混凝土的28 d抗压强度超过100 MPa,随着养护龄期达到180、360 d时,混凝土的抗压强度在此过程中仍然继续增长。两组混凝土在360 d时的抗压强度分别达到了150.1、163.7 MPa,并且它们的静压力弹性模量在56 d龄期时在50 GPa左右。  相似文献   

5.
为研究外掺钢纤维对混凝土早期力学性能的影响,以不同钢纤维掺量和时间龄期为变化参数,设计了168个外掺钢纤维混凝土棱柱体试块进行早龄期轴心抗压强度及弹性模量试验。试验观察了试件的破坏过程及形态,获取了不同时间龄期外掺钢纤维混凝土的强度及弹性模量等关键特征参数,揭示了不同外掺钢纤维掺量对混凝土早龄期强度及弹性模量的影响规律,并推导出不同时间龄期外掺钢纤维混凝土强度和弹性模量的计算式,研究结果表明:外掺钢纤维对混凝土早期弹性模量的有所提高,对混凝土早期轴心抗压强度的提高不显著。当外掺钢纤维≥40 kg/m3时,可有效提高3、28 d龄期混凝土的弹性模量,因此,建议外掺钢纤维量应大于40 kg/m3。  相似文献   

6.
对养护龄期分别为12,24,36h的聚苯乙烯()混凝土进行试验,研究了聚苯乙烯(EPS)混凝土的早期抗压强度,利用100mm的SHPB装置进行了冲击压缩试验,得到不同应变率下的全过程应力-应变曲线,并与养护龄期为28d的EPS混凝土力学性能进行比较。结果表明:随着养护龄期的增加,EPS混凝土的抗压强度和抗冲击性能随之增加。养护龄期为36h,28d时,EPS混凝土的动态抗压强度随着应变率的增加而增大,体现了显著的应变率相关性;养护龄期为24,12h时,EPS混凝土的动态抗压强度随着应变率的增加变化不明显。另外,冲击荷载下,EPS混凝土破坏状态呈黏聚性,即碎而不散,表明其具有良好的韧性及优越吸能特性。  相似文献   

7.
首先选取了细骨料取代率、水泥取代率、粉煤灰掺量为主要试验参数,制作了25组150个玻璃混凝土立方体试块,通过基本工作性能和力学性能试验研究,对其坍落度、破坏形态、抗压强度和应力-应变关系曲线进行了测试分析.试验结果表明:随着玻璃砂掺量的增大,混凝土坍落度显著改善;玻璃混凝土立方体破坏形态与普通混凝土立方体破坏形态类似;对于7 d龄期玻璃混凝土,用玻璃砂取代细骨料后,混凝土体现出早强性,随着玻璃粉掺量的增大,混凝土强度大幅降低;对于28 d龄期玻璃混凝土,玻璃砂掺量对混凝土强度影响不显著,随着玻璃粉掺量的增大,混凝土强度降低幅度减小;掺入粉煤灰后,7、28 d立方体抗压强度均显著提高;玻璃粉掺量是影响应力-应变关系曲线的主要因素.  相似文献   

8.
试验研究了水胶比、超细粉煤灰(以下简称UFA)掺量对高性能混凝土(以下简称HPC)钢筋握裹力的影响。结果表明当超细粉煤灰掺量一定时,HPC钢筋握裹力随水胶比增大而减小,当水胶比一定时,HPC钢筋握裹力随超细粉煤灰掺量的增加而减小。分析发现,当抗压强度相同时,掺UFA的HPC钢筋握裹力要大于不掺UPA混凝土钢筋握裹力。作者用回归分析方法建立了HPC钢筋握裹力与抗压强度之间的关系式,该关系式表明HPC钢筋握裹力随抗压强度的增大而线性增大。  相似文献   

9.
用杆径为50mm的分离式霍普金森压杆(SHPB)试验研究了不同聚乙烯醇(PVA)纤维体积分数和不同基体强度的高延性纤维增强水泥基复合材料(PVA-ECC)在3种应变率下的动态压缩性能.结果表明:PVA纤维可有效改善PVA-ECC试件的冲击破坏程度,且体积分数越大,试件冲击破坏时的整体性越好;PVA-ECC的动态峰值应力、峰值应变和韧性均随应变率增加而明显提高,表现出较强的应变率效应;PVA纤维体积分数对PVA-ECC动态压缩性能影响明显,尤其对PVA-ECC峰后韧性的影响最为显著,但对PVA-ECC抗压强度应变率敏感性的影响较小;较高基体强度PVA-ECC具有较大的动态峰值应力,但动态峰值应变提高不明显,且其峰后韧性明显降低,不同基体强度对PVA-ECC抗压强度应变率敏感性的影响也不太显著.  相似文献   

10.
对120个经20~900℃作用后、尺寸为70.7mm×70.7mm×228.0mm的混杂纤维活性粉末混凝土(RPC)试件进行了单轴受压试验,分析了纤维掺量和经历温度对混杂纤维RPC轴心抗压强度、弹性模量、峰值应变和受压应力应变曲线的影响.结果表明:相同高温作用后,钢纤维掺量为1%(体积分数)的混杂纤维RPC抗压强度最低,而钢纤维掺量为2%,聚丙烯纤维掺量不同的混杂纤维RPC抗压强度差别不大;轴心抗压强度和弹性模量随经历温度的升高先增大后减小,且弹性模量下降速度比抗压强度快;经历温度为600℃时,峰值应变达到最大值,且峰值点前应变迅速增大,峰值点后呈线性减小.通过回归分析,建立了抗压强度、弹性模量和峰值应变随温度变化的计算公式,提出了用五次多项式和有理分式表达的混杂纤维RPC应力应变曲线方程.与普通混凝土和高强混凝土相比,混杂纤维RPC具有更优越的抗高温性能.  相似文献   

11.
为研究钢纤维页岩陶粒混凝土在台风、海浪和地震等动荷载作用下的动力学性能,制备了5种不同钢纤维掺量的钢纤维页岩陶粒混凝土试件进行静态抗压试验和SHPB单轴冲击试验,分析了3种冲击气压下材料的应变率效应和钢纤维体积掺量对动态抗压强度的影响,并用BP神经网络模型预测了动态抗压强度。结果表明,材料的应变率效应主要体现在增强效果上;不同应变率会影响钢纤维掺量对动态抗压强度的增幅,其中低应变率下增幅最大;BP神经网络模型对钢纤维掺量较小的试验组动态抗压强度预测较准确。  相似文献   

12.
通过对同批次2组圆柱体试件(每组3个)、2组立方体试件(每组3个)进行单轴受压试验,研究龄期、试件类型和纤维类型等因素对超高韧性水泥基复合材料(UHTCC)受压性能的影响,得到UHTCC的轴压应力 应变全曲线及不同类型试件的受压性能规律。结果表明:28 d龄期的圆柱体试件受压时,峰值应变约为0.015,明显高于普通混凝土峰值应变(0.002);极限压应变为0.034,约为普通混凝土的10倍;7d龄期试件的轴压应力 应变全曲线在应力达到峰值后表现出明显的缓慢下降过程,说明此时UHTCC具有良好的压缩韧性;随着龄期的增长,UHTCC抗压强度提高,但变形能力有所下降;掺入普通高强高模PVA纤维制作的试件抗压强度较高,但变形性能低于K-ⅡREC15型PVA纤维制作的试件;龄期相同时,立方体试件的抗压强度高于圆柱体试件,说明试件尺寸与形状对抗压强度影响较大。  相似文献   

13.
研究了玄武岩纤维掺量对全再生粗骨料混凝土抗压和抗折强度、破坏形态、单轴受压应力-应变曲线的影响.结果表明:掺入玄武岩纤维后,试件的抗压强度提高,受压破坏时的整体性更好;随着玄武岩纤维掺量的增加,试件的抗折强度逐渐增大,所有抗折试件均为峰值后脆性破坏;随着玄武岩纤维掺量的增加,试件的峰值应力先增大后减小,峰值应变、静压弹...  相似文献   

14.
本文通过试验研究了水胶比,超细粉煤灰(以下简称UFA)掺量对高性能混凝土(以下简称HPC)钢筋握裹力的影响,试验结果表明当UFA掺量一定时,HPC钢筋握裹力随水胶比增大而减少,当水胶比一定时,HPC钢筋握裹力随UFA掺量的增加而减少,对试验结果进行分析发现,当抗压强度相等时,掺UFA的HPC钢筋握裹力要大于不掺UFA混凝土钢筋握裹力,作者用回归分析的方法建立了HPC钢筋握裹力与抗压强度之间的关系式,该关系式表明HPC钢筋握裹力随抗压强度的增大而线性增大。  相似文献   

15.
王大鹏  吴凯 《工业建筑》2023,(4):173-179
为探究冲击荷载作用下养护条件对玄武岩纤维混凝土力学性能的影响,采用分离式霍普金森压杆试验装置(SHPB)对不同养护龄期(1 d、3 d、7 d、14 d、28 d)及养护相对湿度(35%、55%、75%、95%)的玄武岩纤维混凝土开展动态单轴压缩试验,分析养护龄期及养护相对湿度对试件的平均应变率、峰值应力、能量耗散及分形维数的影响规律。结果表明:相同冲击荷载作用下试件平均应变率会随养护龄期的增长、相对湿度的增大而降低,峰值应力随之增大,养护龄期与平均应变率间呈指数负相关,与峰值应力间呈指数正相关;冲击荷载作用下试件能量时程曲线可分为三个阶段,其透射能、耗散能及破碎耗能密度均随养护龄期的增长、相对湿度的增大而增大,反射能随之降低,养护龄期的增长、相对湿度的增大会使试件水化产物增多,增强试件整体性;养护相对湿度为95%时,相较于养护龄期为1 d试件,养护龄期为3 d、7 d、14 d、28 d试件分形维数降幅分别为8.61%、13.91%、23.58%、26.68%,养护龄期减少、相对湿度降低会使试件破碎程度增加,分形维数随之增大。  相似文献   

16.
为研究不锈钢钢筋钢纤维混凝土(SFSRC)梁在冲击荷载作用下的动态力学性能,采用超高重型多功能落锤冲击试验系统,对4根不同掺率的SFSRC梁进行落锤冲击试验。结果表明:钢纤维体积掺量由0%提升至2%的过程中,试件冲击力峰值逐渐增加,跨中峰值位移逐渐降低,整体的耗能阻裂能力逐渐增强,破坏模式由弯剪破坏向弯曲破坏过渡;而钢纤维体积掺量由2%提升至3%的过程中,试件冲击力峰值增长缓慢,跨中峰值位移反而增大,破坏模式由弯曲破坏向弯剪破坏过渡。钢纤维的掺入可以明显抑制梁锤接触区域的局部损伤,并提升试件的抗冲击刚度;较高冲击能量下,与普通混凝土相比,钢纤维混凝土能充分使不锈钢钢筋发挥作用,试件表现较好的延性。  相似文献   

17.
研究了采用聚羧酸系防冻泵送剂所配制的C30和C50混凝土的抗压强度、静弹性模量、钢筋握裹力和轴心抗压强度等力学性能,结果表明:采用聚羧酸系防冻泵送剂所配制的C30和C50混凝土各龄期抗压强度均能够达到JC475-2004《混凝土防冻剂》中一等品的标准要求,-7+56d龄期时负温混凝土抗压强度高于基准标养混凝土28d强度;7d龄期以前,自然变负温条件下混凝土的抗压强度略高于早期低、负温养护的各组混凝土,28d龄期以后则相反;28d龄期时,早期低、负温养护混凝土的静弹性模量、钢筋握裹力、轴心抗压强度均随着养护温度的降低而降低,尤其是钢筋握裹力降低程度最为明显。  相似文献   

18.
对钢纤维掺量(体积分数,下同)为0%,1%,2%和4%的4种活性粉末混凝土(RPC),在较长龄期(3a)时进行单轴压缩试验,得到其轴向、径向应力-应变全曲线及轴应力-体应变曲线,并对以上曲线进行分析.结果表明:钢纤维活性粉末混凝土(SFRPC)峰值强度随钢纤维掺量的增加几乎呈线性增加,当钢纤维掺量为4%时,其圆柱体试件(Ф50×100mm)峰值强度可达218MPa;轴向峰值应变及平均泊松比随钢纤维掺量的增加而增加;钢纤维掺量为0%的素RPC弹性模量最大,钢纤维掺量为1%,2%和4%的SFRPC弹性模量相当;素RPC表现为劈裂破坏,钢纤维掺量为1%的SFRPC表现为单剪切破坏,而钢纤维掺量为4%的SFRPC表现为X形剪切破坏.  相似文献   

19.
在混杂纤维总体积掺量为2%的条件下,改变钢纤维、聚丙烯纤维和聚乙烯醇纤维的体积掺量,设计制作了两类混杂纤维水泥基试块,通过轴心受压试验,分别研究钢-聚丙烯和聚乙烯醇-聚丙烯混杂纤维水泥基复合材料的轴心受压应力-应变关系,并提出了不同纤维掺量变化对峰值应力、峰值应变影响的计算式。结果表明:钢纤维和聚乙烯醇纤维能提高试块的抗压强度,聚丙烯纤维能显著提高试块的峰值应变,当聚丙烯纤维体积掺量大于0. 5%时,混杂纤维水泥基复合材料的抗压强度会低于基体。  相似文献   

20.
《混凝土》2016,(12)
通过对不同微钢纤维掺量的9种配合比的钢纤维水泥基复合材料单轴压缩试验,研究了微钢纤维掺量对水泥基复合材料弹性模量和峰值应变的影响。试件采用150 mm×150 mm×300 mm的棱柱体试块。单轴受压试验获得了棱柱体试件的轴心抗压强度、峰值应变和弹性模量,并系统分析了微钢纤维体积掺量对上述参数的影响。在试验结果基础上,分别给出了可以考虑微钢纤维掺量影响的弹性模量和峰值应变与轴心抗压强度的拟合公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号