首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

2.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

3.
In this paper, we prove the existence of transonic shocks adjacent to a uniform one for the full Euler system for steady compressible fluids with cylindrical symmetry in a cylinder, and consequently show the stability of such uniform transonic shocks. Mathematically we solve a free boundary problem for a quasi-linear elliptic–hyperbolic composite system. This reveals that the boundary conditions and equations interact in a subtle way. The key point is to “separate” in a suitable way the elliptic and hyperbolic parts of the system. The approach developed here can be applied to deal with certain multidimensional problems concerning stability of transonic shocks for the full Euler system.  相似文献   

4.
We study the stability of stationary transonic shock fronts under two-dimensional perturbation in gas dynamics. The motion of the gas is described by the full Euler system. The system is hyperbolic ahead of the shock front, and is a hyperbolic-elliptic composed system behind the shock front. The stability of the shock front and the downstream flow under two-dimensional perturbation of the upstream flow can be reduced to a free boundary value problem of the hyperbolic-elliptic composed system. We develop a method to deal with boundary value problems for such systems. The crucial point is to decompose the system to a canonical form, in which the hyperbolic part and the elliptic part are only weakly coupled in their coefficients. By several sophisticated iterative processes we establish the existence and uniqueness of the solution to the described free boundary value problem. Our result indicates the stability of the transonic shock front and the flow field behind the shock.

  相似文献   


5.
This paper is devoted to the study of a transonic shock in three-dimensional steady compressible flow passing a duct with a general section. The flow is described by the steady full Euler system, which is purely hyperbolic in the supersonic region and is of elliptic-hyperbolic type in the subsonic region. The upstream flow at the entrance of the duct is a uniform supersonic one adding a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem to determine the transonic shock and the flow behind the shock is reduced to a free boundary value problem of an elliptic-hyperbolic system. The new ingredients of our paper contain the decomposition of the elliptic-hyperbolic system, the determination of the shock front by a pair of partial differential equations coupled with the three-dimensional Euler system, and the regularity analysis of solutions to the boundary value problems introduced in our discussion.

  相似文献   


6.
Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets. For the three-dimensional steady non-isentropic compressible Euler system with frictions, we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections. In this article, we are devoted to proving rigorously that a large class of these transonic shock solutions are stable, under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts, in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts. Except its implications to applications, because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system, we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.  相似文献   

7.
In our previous work, we have established the existence of transonic characteristic discontinuities separating supersonic flows from a static gas in two-dimensional steady compressible Euler flows under a perturbation with small total variation of the incoming supersonic flow over a solid right wedge. It is a free boundary problem in Eulerian coordinates and, across the free boundary (characteristic discontinuity), the Euler equations are of elliptic–hyperbolic composite-mixed type. In this paper, we further prove that such a transonic characteristic discontinuity solution is unique and L 1–stable with respect to the small perturbation of the incoming supersonic flow in Lagrangian coordinates.  相似文献   

8.
The shock reflection problem is one of the most important problems in mathematical fluid dynamics, since this problem not only arises in many important physical situations but also is fundamental for the mathematical theory of multidimensional conservation laws that is still largely incomplete. However, most of the fundamental issues for shock reflection have not been understood, including the regularity and transition of different patterns of shock reflection configurations. Therefore, it is important to establish the regularity of solutions to shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, for a regular reflection configuration, the potential flow governs the exact behavior of the solution in C 1,1 across the pseudo-sonic circle even starting from the full Euler flow, that is, both of the nonlinear systems are actually the same in a physically significant region near the pseudo-sonic circle; thus, it becomes essential to understand the optimal regularity of solutions for the potential flow across the pseudo-sonic circle (the transonic boundary from the elliptic to hyperbolic region) and at the point where the pseudo-sonic circle (the degenerate elliptic curve) meets the reflected shock (a free boundary connecting the elliptic to hyperbolic region). In this paper, we study the regularity of solutions to regular shock reflection for potential flow. In particular, we prove that the C 1,1-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock. We also obtain the C 2,α regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. The problem involves two types of transonic flow: one is a continuous transition through the pseudo-sonic circle from the pseudo-supersonic region to the pseudo-subsonic region; the other a jump transition through the transonic shock as a free boundary from another pseudo-supersonic region to the pseudo-subsonic region. The techniques and ideas developed in this paper will be useful to other regularity problems for nonlinear degenerate equations involving similar difficulties.  相似文献   

9.
We prove the stability of a Mach configuration, which occurs in shock reflection off an obstacle or shock interaction in compressible flow. The compressible flow is described by a full, steady Euler system of gas dynamics. The unperturbed Mach configuration is composed of three straight shock lines and a slip line carrying contact discontinuity. Among four regions divided by these four lines in the neighborhood of the intersection, two are supersonic regions, and other two are subsonic regions. We prove that if the constant states in the supersonic regions are slightly perturbed, then the structure of the whole configuration holds, while the other two shock fronts and the slip line, as well as the flow field in the subsonic regions, are also slightly perturbed. Such a conclusion asserts the existence and stability of the general Mach configuration in shock theory. In order to prove the result, we reduce the problem to a free boundary value problem, where two unknown shock fronts are free boundaries, while the slip line is transformed to a fixed line by a Lagrange transformation. In the region where the solution is to be determined, we have to deal with an elliptic‐hyperbolic composed system. By decoupling this system and combining the technique for both hyperbolic equations and elliptic equations, we establish the required estimates, which are crucial in the proof of the existence of a solution to the free boundary value problem. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
We establish an existence theorem for transonic isentropic potential flows where the subsonic region is bounded by the sonic line and thus the governing equation may become degenerate on the boundary partly or entirely. It has been conjectured by experiments and numerical studies that the self-similar multidimensional flow changes its type, namely, hyperbolic far from the origin (supersonic region) and elliptic near the origin (subsonic region). Furthermore, the potential equation has a different nonlinearity compared to other transonic problems such as the unsteady transonic small disturbance equation, the nonlinear wave equation, and the pressure gradient equation. Namely, the coefficients of the potential equation depend on the gradients while others are independent of the gradients. We provide techniques to handle the gradients, establish interior and boundary gradient estimates for the potential flow in a convex region, and answer the conjecture, that is, the flow is strictly elliptic and the region is subsonic.  相似文献   

11.
We present the existence of the subsonic solution to a two-dimensional Riemann problem governed by a self-similar nonlinear wave equation where the boundary of the subsonic region consists of a transonic shock and the sonic circle. Thus the governing equation becomes a free boundary problem on the transonic shock and degenerates on the sonic circle. By utilizing the barrier methods and iterative methods, we show the well-posedness of the transonic shock in the entire subsonic region and thus establish the global solution. This result does not rely on any smallness of Riemann data.  相似文献   

12.
We discuss the regular transonic shock reflections for a model problem of multidimensional conservation laws, the nonlinear wave system. We consider two incident shocks that create reflected shocks, and the state behind the reflected shocks becomes subsonic. We present the existence of the global solution to this configuration, and provide an analysis to handle a degeneracy occurred in the problem and Lipschitz estimates near the sonic boundary. We further implement Lax–Liu positive schemes and Strang splitting, and obtain linear correlations of the incident shock strength and the reflected shock strength. The result obtained in this paper develops a mathematical theory of transonic shock reflection problems. Furthermore the numerical result provides better understanding of the solution structure. This paper provides an application of an important physical problem.  相似文献   

13.
We establish the existence of solutions for a class of quasilinear degenerate elliptic equations. The equations in this class satisfy a structure condition which provides ellipticity in the interior of the domain, and degeneracy only on the boundary. Equations of transonic gas dynamics, for example, satisfy this property in the region of subsonic flow and are degenerate across the sonic surface. We prove that the solution is smooth in the interior of the domain but may exhibit singular behavior at the degenerate boundary. The maximal rate of blow-up at the degenerate boundary is bounded by the “degree of degeneracy” in the principal coefficients of the quasilinear elliptic operator. Our methods and results apply to the problems recently studied by several authors which include the unsteady transonic small disturbance equation, the pressure-gradient equations of the compressible Euler equations, and the singular quasilinear anisotropic elliptic problems, and extend to the class of equations which satisfy the structure condition, such as the shallow water equation, compressible isentropic two-dimensional Euler equations, and general two-dimensional nonlinear wave equations. Our study provides a general framework to analyze degenerate elliptic problems arising in the self-similar reduction of a broad class of two-dimensional Cauchy problems.  相似文献   

14.
In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through a general two‐dimensional nozzle with variable sections. The flow is governed by the inviscid potential equation, and is supersonic upstream, has no‐flow boundary conditions on the nozzle walls, and a given pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions of C flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution to the corresponding free boundary problem such that the equation is always subsonic in the downstream region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than that in the entry. This confirms exactly the conjecture of Courant and Friedrichs on the transonic phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner singularities. © 2004 Wiley Periodicals, Inc.  相似文献   

15.
We study the ultra‐relativistic Euler equations for an ideal gas, which is a system of nonlinear hyperbolic conservation laws. We first analyze the single shocks and rarefaction waves and solve the Riemann problem in a constructive way. Especially, we develop an own parametrization for single shocks, which will be used to derive a new explicit shock interaction formula. This shock interaction formula plays an important role in the study of the ultra‐relativistic Euler equations. One application will be presented in this paper, namely, the construction of explicit solutions including shock fronts, which gives an interesting example for the non‐backward uniqueness of our hyperbolic system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper studies the asymptotic equivalence of the Broadwell model of the nonlinear Boltzmann equation to its corresponding Euler equation of compressible gas dynamics in the limit of small mean free path ε. It is shown that the fluid dynamical approximation is valid even if there are shocks in the fluid flow, although there are thin shock layers in which the convergence does not hold. More precisely, by assuming that the fluid solution is piecewise smooth with a finite number of noninteracting shocks and suitably small oscillations, we can show that there exist solutions to the Broadwell equations such that the Broadwell solutions converge to the fluid dynamical solutions away from the shocks at a rate of order (ε) as the mean free path ε goes to zero. For the proof, we first construct a formal solution for the Broadwell equation by matching the truncated Hilbert expansion and shock layer expansion. Then the existence of Broadwell solutions and its convergence to the fluid dynamic solution is reduced to the stability analysis for the approximate solution. We use an energy method which makes full use of the inner structure of time dependent shock profiles for the Broadwell equations.  相似文献   

17.
We study a two dimensional Riemann problem for the self-similar nonlinear wave system which gives rise to an interaction of a transonic shock and a rarefaction wave. The interesting feature of this problem is that the governing equation changes its type from supersonic in the far field to subsonic near the origin. The subsonic region is then bounded above by the sonic line (degenerate) and below by the transonic shock (free boundary). Furthermore due to the rarefaction wave in the downstream, which interacts with the transonic shock, the problem becomes inhomogeneous and degenerate. We establish the existence result of the global solution to this configuration, and present analysis to understand the solution structure of this problem.  相似文献   

18.
In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial–boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity.  相似文献   

19.
We investigate global existence and asymptotic behavior of the 3D quasilinear hyperbolic equations with nonlinear damping on a bounded domain with slip boundary condition, which describes the propagation of heat waves for rigid solids at very low temperature, below about 20 K. The global existence and uniqueness of classical solutions are obtained when the initial data are near its equilibrium. Time asymptotically, the internal energy is conjectured to satisfy the porous medium equation and the heat flux obeys the classical Darcy’s-type law. Based on energy estimates, we show that the classical solution converges to steady state exponentially fast in time. Moreover, we also verify that the same is true for the corresponding initial boundary value problem of porous medium equation and thus justifies the validity of Darcy’s-type law in large time.  相似文献   

20.
Some recent methods for solving second-order nonlinear partial differential equations of divergence form and related nonlinear problems are surveyed. These methods include entropy methods via the theory of divergence-measure fields for hyperbolic conservation laws, kinetic methods via kinetic formulations for degenerate parabolichyperbolic equations, and free-boundary methods via free-boundary iterations for multidimensional transonic shocks for nonlinear equation of mixed elliptic-hyperbolic type. Some recent trends in this direction are also discussed.Dedicated to IMPA on the occasion of its 50th anniversary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号