首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
中国天然草地氮磷流动空间特征   总被引:5,自引:2,他引:3  
【目的】定量研究天然草地的氮磷流动空间特征,为优化牧草施肥和提高牧草产量提供科学依据。【方法】建立中国天然草地氮磷养分输入(输出)数据库,利用NUFER模型定量中国天然草地氮磷平衡账户、利用率和环境排放特征。【结果】(1)2013年,全国天然草地氮和磷的输入(输出)总量分别为5 034 Gg N和318 Gg P,单位面积的输入(输出)量分别为19 kg N·hm-2和1.2 kg P·hm-2。氮沉降和畜禽粪尿磷分别占氮和磷输入总量的49%和89%。各区域天然草地氮和磷输入(输出)量变化范围分别为7.0-70 kg N·hm-2和0.12-8.0 kg P·hm-2;(2)2013年,天然草地氮和磷养分利用率分别为105%和191%,各区域间差异很大。中国各地区天然草地的氮利用率变化范围为67%-141%,磷利用率的变化范围为75%-538%;(3)2013年,天然草地氮和磷的环境损失量分别为1.7 kg N·hm-2和0.059 kg P·hm-2,氨挥发和侵蚀分别是氮和磷的主要损失途径。西南和东北地区天然草地氮损失量较多,部分区域的损失量超过8.0 kg N·hm-2;西北地区氮损失量较少,平均不足3.0 kg N·hm-2;青藏高原区氮损失量最少,不足1.0 kg N·hm-2。磷的环境排放空间规律与氮排放相似;(4)2013年,全国天然草地土壤氮和磷的亏缺总量分别为706 Gg N和315 Gg P,单位面积亏缺量分别为2.7 kg N·hm-2和1.2 kg P·hm-2。北方和西南部分地区天然草地的氮土壤累积量为负值,重庆、吉林和辽宁的土壤氮亏损量超过20 kg N·hm-2;西部和西南部分省份天然草地的氮土壤累积量为正值,其中广西和云南的土壤氮累积量超过5.0 kg N·hm-2。除广西和贵州外,其他区域天然草地磷养分均有不同程度的亏缺,重庆天然草地磷的亏缺量最大,为3.7 kg P·hm-2。【结论】2013年,全国天然草地的氮和磷输入量较小,约50%的氮素通过氮沉降输入系统,约90%的磷素通过畜禽粪尿磷输入系统;全国天然草地土壤的氮和磷呈亏缺状态,养分利用率高于100%,当前草地系统不可持续,应注意补施氮磷养分;全国天然草地单位面积氮和磷的环境损失量较小,西南地区天然草地的氮和磷环境损失量大于其他区域。各区域天然草地氮磷流动空间特征差异较大。  相似文献   

2.
中国苜蓿、黑麦草和燕麦草产量差及影响因素   总被引:3,自引:2,他引:1  
【目的】在国家大力推进“粮转饲”和种植业结构调改的背景下,研究苜蓿、黑麦草和燕麦草3种栽培牧草产量差及影响因素,为揭示牧草生产潜力和制定牧草高产高效措施提供科学依据。【方法】从中国知网和Web of Science两个数据库,以“苜蓿产量 施肥”、“黑麦草产量 施肥”、“燕麦草产量 施肥”、“牧草栽培技术”、“Alfalfa, Fertilizer, China”、“Alfalfa, Irrigation, China”为关键词,共收集目标文献176篇,其中关于中国苜蓿的文章101篇、黑麦草的文章51篇和燕麦的文章24篇。总结中国苜蓿、黑麦草和燕麦草的产量潜力和产量差。通过分析施肥、播种和灌溉对牧草产量的影响,阐明影响牧草产量差的因素及消减途径。【结果】当前中国栽培苜蓿、黑麦草和燕麦草的产量潜力分别为24、26和22 t·hm-2,农户产量分别实现了产量潜力的28%、63%和41%。氮磷肥的施用、播种和灌溉可以显著地影响牧草产量,苜蓿的产量最佳施肥量约为氮肥(N)52 kg·hm-2,磷肥(P2O5)141 kg·hm-2,最佳播种量约为20 kg·hm-2,最佳灌水量约为5 737 m3·hm-2;黑麦草的产量最佳施肥量约为氮肥(N)585 kg·hm-2,磷肥(P2O5)46 kg·hm-2,最佳播种量约为30 kg·hm-2;燕麦草的产量最佳施氮量尚没有明确的结果,在施氮量<225 kg·hm-2时,燕麦草的产量随施氮量的增加呈线性的增加,其产量最佳施磷(P2O5)量约为128 kg·hm-2,最佳播种量约为180 kg·hm-2。【结论】中国栽培苜蓿、黑麦草和燕麦草有很大的增产空间,增产潜力分别为17、10和13 t·hm-2。合理的施肥、播种和灌溉可以缩小产量差,优化施肥量可以使苜蓿增产约3.4 t·hm-2,黑麦草增产约1.5 t·hm-2,燕麦草增产约4.2 t·hm-2。优化播种量可以使苜蓿增产60%,燕麦草增产78%,但是仅通过优化播种量并不能使黑麦草增产。优化灌溉量可以使苜蓿增产约9.1 t·hm-2。  相似文献   

3.
尿素硝铵溶液对黑土区春玉米产量和氮素吸收利用的影响   总被引:6,自引:0,他引:6  
【目的】尿素硝铵溶液(urea ammonium nitrate solution,UAN)是集硝态氮、铵态氮和酰胺态氮于一身的液体氮肥品种,兼有3种氮源优势。本研究目的在于明确黑土区春玉米施用UAN的肥效和氮素利用效率,为进一步科学应用及推广提供依据。【方法】2015和2016年在吉林省黑土区设置大田试验,施肥处理包括:不施氮(N0)、尿素一次性基施200 kg N·hm-2(U200)、UAN一次性基施200 kg N·hm-2(UAN200)、尿素基施80 kg N·hm-2+追施120 kg N·hm-2(U80-120)、UAN基施80 kg N·hm-2+追施120 kg N·hm-2(UAN80-120)、尿素基施64 kg N·hm-2+追施96 kg N·hm-2(U64-96)、UAN基施64 kg N·hm-2+追施96 kg N·hm-2(UAN64-96),追肥时期为拔节-大喇叭口期,施肥深度均为12 cm。测定指标包括籽粒产量、产量性状、植株吸氮量、土壤无机氮含量,并计算土壤-作物系统的氮素平衡、氮素的表观利用、残留和损失状况。【结果】2015和2016年施氮处理的玉米产量、植株吸氮量相比不施氮处理显著提高,均以UAN200处理最高(10.3、11.9 t·hm-2和187.4、288.2 kg·hm-2),而U64-96处理最低(9.14、10.2 t·hm-2和159.1、243.8 kg·hm-2)。相同施氮量、施用方式条件下,UAN处理的玉米产量均等于或高于尿素处理。2015年UAN在200 kg N·hm-2一次性、分次施用和160 kg N·hm-2分次施用条件下相比尿素分别增加6.1%、2.0%和5.3%,2016年分别增加0.1%、7.8%和7.4%,其中UAN80-120处理显著增产。UAN增产的主要原因是减少果穗秃尖长度而增加单穗粒数。UAN处理的植株氮素吸收量在相同施氮量、施用方式条件下均高于尿素处理,而收获后土壤无机氮残留量和氮素表观盈余量相对较低,因而获得较高的氮素利用率。与UAN200处理相比,UAN64-96处理在减氮40 kg N·hm-2条件下两年玉米产量分别达到9.6和11.0 t·hm-2,其中2015年干旱条件下与UAN200处理无显著差异。而且,UAN64-96处理的土壤氮素表观残留率最低,2015和2016年分别为2.4%和4.4%,而氮素表观利用率最高,分别达到42.6%和52.0%。【结论】相同用量和施用方式下,黑土区玉米施用UAN可获得与尿素相同甚至更高的产量和氮素吸收量,同时土壤氮素残留和盈余较少,氮素利用率明显较高,环境效应较好。从施氮量、产量和氮素利用及损失等方面综合考虑,黑土区春玉米推荐施用160 kg N·hm-2的UAN,以基肥40%和拔节-大喇叭口期追肥60%分次施用。  相似文献   

4.
栾城城郊型农牧系统养分流动与环境排放时空特征   总被引:7,自引:1,他引:6  
【目的】改革开放以来中国种植业和畜牧业生产模式及农牧系统结合程度都发生了很大改变,这种改变对农牧体系养分流动以及环境排放都产生了较大影响。论文以河北省石家庄市栾城区为例,分析其1985-2014年农牧系统生产结构、养分流动和损失时空变化特征,确定农牧系统养分损失的关键节点和影响因素,为栾城区以及其他县级行政区的农业可持续发展提供理论依据。【方法】采用食物链养分流动模型(NUFER模型:nutrient flow in food chain, environment and resources use)并结合实地调研,定量栾城区氮磷养分流动特征和影响因素。NUFER模型综合考虑了作物生产系统、畜禽生产系统、食品加工系统和家庭消费系统的氮磷养分流动、利用率和环境损失。实地调研采用面对面的问卷调研方式收集信息,调研内容包括农田养分输入输出、生产管理和养殖户农场养分输入输出、生产管理及粪尿管理等。【结果】2014年种植业蔬菜水果播种面积占总播种面积的比例达到25%,每公顷耕地氮和磷(折纯,下同)投入量分别为763和335 kg,单位面积氮和磷盈余量分别为132和237 kg·hm-2;畜牧业养殖密度达到18 LU/hm2,饲料进口率达到75%,畜牧业源外源氮磷投入分别占农牧体系外源氮磷投入量的57%和39%,畜牧业源氮磷主产品输出占农牧体系氮磷主产品输出的60%和33%,是典型的高环境负荷的城郊型农牧生产体系。1985-2014年,畜牧业畜禽粪尿氮素还田率由59%降至35%。种植业氮利用率从45%降至43%,磷利用率从32%降至23%;畜牧业氮利用率从14%增至30%,磷利用率从4.4%增至10%;农牧系统氮利用率从41%降至36%,磷利用率从27%降至16%。2014年生产1 kg作物产品氮的平均氮损失为0.66 kg,生产1 kg作物产品磷的平均磷损失为0.11 kg;生产1 kg畜禽产品氮的平均氮损失为1.4 kg,生产1 kg畜禽产品磷的平均磷损失为1.8 kg;生产1 kg农牧系统产品氮的平均氮损失为1.5 kg·kg-1,磷损失为0.75 kg·kg-1磷产品。农牧体系氮损失的主要途径是氨挥发,农牧体系磷损失的主要途径是粪尿直接水体排放。【结论】受城镇化驱动和农牧系统生产结构改变的影响,经过近30年发展,栾城区成为高投入、高产出、低氮磷利用率、畜牧业占主导地位的高环境负荷的城郊型农牧生产体系。当前农牧系统养分利用率偏低、损失偏高主要源自过高的畜禽养殖密度、农牧分离以及农牧体系养分管理措施的不合理。因此,确定栾城区合理的畜禽养殖承载量,加强饲养管理,实行粪尿全链条管理等农牧结合措施将对农牧系统可持续发展具有重要意义。  相似文献   

5.
【目的】以华北平原典型地区河北省为例,明确农牧系统氮素养分流动特征和环境效应,分析农牧系统氮素循环利用率和农牧业结合的程度,探讨农牧系统氮素的优化管理途径,为农牧业养分循环和绿色可持续发展提供科学依据。【方法】以河北省“农田-畜牧”生产系统为边界,在整理统计资料、文献数据和调研数据的基础上,利用物质流分析方法,分别定量1980-2015年河北省农田体系、畜牧体系和农牧系统的各个氮素输入和输出项,同时利用氮素利用率、氮素盈余量和氮素回田率等指标分析氮素流动特征与环境效应。农牧系统的氮素输入项主要包括化肥、生物固氮、干湿沉降、灌溉、人粪尿还田、外源饲料;氮素输出项主要包括农田体系主产品的本地消费、外销,畜牧体系主产品的本地消费、外销,农牧系统大气排放、水体排放;内部的氮素循环项主要包括农田系统副产品还田、农田系统主、副产品作为本地饲料、畜牧系统副产品还田。【结果】1980-2015年,河北省农田生产体系氮素年均输入量增加1.9倍,而作物收获氮量仅增长1.5倍,导致农田氮盈余量和损失量分别增加1.7和1.9倍,氮素利用率由47.2%降至41.4%。与有机肥氮投入相比,化肥氮投入占农田总氮投入60%以上,近年来接近70%。区域间农田养分平衡差异大,氮素输入方面,邯郸市和唐山市较高(>600 kg·hm-2),承德市最低(<200 kg·hm-2);氮素盈余方面,唐山市最高,为267.8 kg·hm-2,衡水市最低,为51.6 kg·hm-2。畜牧体系氮素输入量也明显增加,在2005年达到最大值,为1980年的7.7倍;畜禽产品和粪尿氮素产生量同时呈现增加趋势,尤其是粪尿氮素产生量由21.8×104 t增加到115.3×104 t;各区域间动物粪尿氮素产生量存在明显差异,其中氮素产生量最高为邯郸市(377.3 kg·hm-2),最低为衡水市(122.6 kg·hm-2)。外源饲料氮素依赖率由60.5%增至72.7%,畜牧粪尿氮素还田率由70.4%降至30.2%,但畜牧体系氮素利用率由6.4%增至16.3%。从农牧系统整体来看,1980-2015年氮素输入总累计量高达9 038.9×104 t,化肥氮素投入量约占总氮素投入量的55.7%,外源饲料氮素投入量占总氮素投入量的33.1%,农牧产品累计总输出氮为2 537.4×104 t,占总累计输入氮量的28.1%,向大气、水体累计排放的总氮量高达4061.2×104 t,约占总累计输入氮量的44.9%。【结论】1980-2015年河北省农牧系统氮素投入量大幅度增加,氮素富集和环境排放严重,氮素利用率偏低,不同区域单位面积氮素平衡存在较大差异,农田生产与畜禽生产之间养分循环严重脱节。因此,应该充分利用本地饲料资源,提高有机肥的还田率,走农牧结合的道路,从而降低因“农牧分离”造成的“高投入-低效率”代价,促进农牧业可持续发展。  相似文献   

6.
【目的】探究连续3年施用磷肥后对紫花苜蓿叶片养分吸收量、光合色素含量、气孔开度及抗氧化系统的影响,为紫花苜蓿高效生产提供科学施肥方法。【方法】2019—2021年,以‘WL366HQ’紫花苜蓿为试验材料,在石河子大学牧草试验站连续开展为期3年的田间试验。试验设置磷肥添加量分别为0(对照,CK)、50 kg·hm-2(低磷,LP)、100 kg·hm-2(中磷,MP)和150 kg·hm-2(高磷,HP),共4个磷肥处理。于苜蓿初花期进行取样,测定干草产量、叶片氮磷含量、色素含量、气孔开度、抗氧化酶活性以及氧化物质等指标。【结果】连续施加磷肥3年后,叶片的氮磷含量、光合色素含量及气孔开度显著增加(P<0.05),其中叶片氮磷含量在中磷处理下最高,分别为54.74和2.99 g·kg-1;叶绿素a和叶绿素b的含量均在中磷处理下最高,类胡萝卜素含量在低磷或中磷处理下最高,且均在CK最低;气孔开度在中磷处理下达到最大,且显著高于CK(P<0.05)。因此,磷肥对苜蓿叶片的形态和生理特性有不同的影...  相似文献   

7.
【目的】在陕西关中冬小麦-夏玉米轮作区,研究还田玉米秸秆的氮释放对土壤供氮和冬小麦氮吸收的影响,为优化区域秸秆还田的小麦氮素管理提供理论依据。【方法】田间试验于2012年10月至2013年5月在陕西省周至县终南镇进行,冬小麦播种后,在小麦行间填埋装有风干玉米秸秆的尼龙网袋,采用网袋法与15N同位素交叉标记还田玉米秸秆和氮肥,在秸秆还田条件下,设置不施氮和施氮200 kg N·hm-2两个处理,重复4次,定期取样测定网袋中剩余秸秆的氮素变化和收获期小麦不同器官的氮含量,研究小麦生长季还田玉米秸秆的氮素释放,秸秆氮和肥料氮的去向,及不同来源的氮素对小麦地上部氮吸收的贡献。【结果】残留在玉米秸秆中的总氮量从小麦播种到越冬前降低,此后到返青期上升,返青期后又逐渐下降。从播种至收获,不施氮和施氮量200 kg N·hm-2时,秸秆自身氮素的释放量分别为19.7和18.3 kg·hm-2,吸持的土壤氮为10.4和7.5 kg·hm-2;吸持肥料氮(施氮时)为3.6 kg·hm-2,因此秸秆向土壤净释放的氮素分别为9.4和7.2 kg·hm-2。小麦收获期,不施氮和施氮200 kg N·hm-2时分别有65.1%和67.7%的秸秆氮残留在未腐解的秸秆中,31.5%和30.4%随着秸秆腐解释放进入土壤或损失,小麦当季吸收利用的秸秆氮很少,分别为3.4%和1.9%。秸秆还田条件下,施氮量为200 kg N·hm-2时,经吸收进入小麦地上部、残留于土壤及损失、被玉米秸秆吸持的肥料氮分别占施入土壤肥料氮总量的25.0%、73.2%和1.8%。土壤氮对小麦当季氮吸收的贡献最大,肥料氮次之,秸秆氮的贡献最小,不施氮与施氮时,分别为98.3%和69.2%、0和30.1%,1.7%和0.6%。小麦吸收的土壤、肥料和秸秆氮素主要分配在小麦籽粒中,不施氮与施氮时分别为98.1%和68.8%、0和30.5%、1.9%和0.7%。【结论】在陕西关中冬小麦-夏玉米轮作区,种植一季小麦后,还田秸秆氮主要残留在田间未腐解的秸秆中,占65%以上;肥料氮以残留于土壤或损失为主,高于70%;土壤氮对小麦氮吸收的贡献最大,约为70%。  相似文献   

8.
油菜专用控释尿素用量对冬油菜产量和氮素吸收的影响   总被引:6,自引:0,他引:6  
【目的】明确不同冬油菜种植区域油菜专用控释尿素用量对冬油菜产量和氮素吸收的影响,验证油菜专用控释尿素一次性施用的可行性和适宜用量,为指导冬油菜轻简化生产提供依据。【方法】于2015-2016年分别开展油菜专用控释尿素静水释放试验和田间埋袋养分释放以及控释尿素用量施用效果田间试验。油菜专用控释尿素用量试验布置于冬油菜3个主产地区--湖南衡阳、江西九江和湖北武穴。试验共设5个氮肥用量梯度,分别为0、60、120、180和240 kg N·hm-2,探究油菜专用控释尿素对不同区域冬油菜产量和氮素吸收的影响。【结果】田间埋袋试验结果表明,油菜专用控释尿素的缓释期在150 d左右,累积释放量为83.4%,与冬油菜氮素需求吻合。施用油菜专用控释尿素可以调控收获密度,增加冬油菜的单株角果数和每角粒数。与不施氮处理相比,单株角果数、每角粒数分别增加15.0-81.5角/株和0.2-2.4粒/角,收获密度随氮肥用量增加或降低协调群体与个体。3个产地的籽粒产量均在施氮量达到180 kg N·hm-2时最高,分别较不施氮增产1 118、1 088和2 049 kg·hm-2。用线性加平台模型拟合的最佳控释尿素用量,湖南衡阳、江西九江和湖北武穴分别为174、180和192 kg N·hm-2。油菜专用控释尿素施用显著增加地上部生物量、氮素含量和氮素积累量。在收获期时,随氮肥用量增加,茎秆中的氮素分配比例逐渐增加,籽粒中氮素积累分配比例减小,而角壳的氮素分配比例保持在10%左右。不同时期氮肥利用率存在差异,苗期最小,花期最大,收获期居中,分别为19.20%-23.45%、50.69%-56.89%和39.39%-46.71%。苗期和花期的氮肥利用率随着施氮量的增加,出现先增加后降低的趋势,在控释尿素用量为180 kg N·hm-2时达到最大;收获期的氮肥利用率随着施氮量的增加呈降低趋势。【结论】油菜专用控释尿素一次性施用可以增加油菜各生育时期的氮素吸收、促进油菜生长发育,提高收获密度、单株角果数和每角粒数,增加油菜产量。不同冬油菜主产区所需专用控释尿素推荐用量差异不大,平均为180 kg N·hm-2。  相似文献   

9.
东北地区农牧系统氮、磷养分流动特征   总被引:5,自引:2,他引:3  
【目的】东北地区是中国重要的商品粮基地及畜牧产品生产地,农牧产品大量生产影响养分流动的趋势,而不同地区的养分流动又存在一定差异,明确不同地区农牧系统养分流动特征,揭示其存在的问题,并针对不同的流动特征提出合理的优化策略,为区域农牧系统氮、磷养分的管理提供理论依据。【方法】通过整理1984-2014年统计资料数据和查阅相关文献参数,利用NUFER模型(nutrient flows in food chain, environment and resources use),以东北地区3个省份的农牧系统为研究对象,估算各省域农牧系统中氮、磷养分的流量、损失量,并对各省域氮、磷养分的循环利用情况、损失途径及利用率作出综合评价,探究东北地区氮、磷养分在农牧生产系统中变化趋势及特征。【结果】1984年吉林、辽宁、黑龙江地区农牧系统氮素总输入量分别为669、746、716 Gg;磷素总输入量分别为121、222、169 Gg,至2014年氮素输入量增长至1 899、1 572、2 256 Gg;磷素输入量达到471、393、769 Gg,氮、磷养分的投入量表现为黑龙江>吉林>辽宁。氮素养分损失率吉林地区最高,磷素养分损失率辽宁地区最高。氮、磷养分循环再利用方面,吉林地区的循环利用率最高,辽宁地区最低。近30年,吉林、辽宁、黑龙江地区农田生产系统氮素养分利用率分别下降10%、11%、32%;磷素养分利用率分别下降16%、2%、23%。畜禽生产系统中,氮素养分的利用率分别增加3%、11%、10%,磷素养分利用率分别增加0.8%、1.9%、3.2%。农牧结合生产系统氮素养分利用率分别由1984年的26%、36%、52%降至2014年的13%、21%、22%,整体表现为黑龙江>辽宁>吉林;磷素养分利用率由1984年的25%、25%、31%降至2014年的9%、14%、10%,表现为辽宁>黑龙江>吉林。【结论】1984-2014年,东北地区农牧系统氮、磷养分投入大幅增加,不同省域间表现出明显差异。黑龙江地区的氮、磷养分可利用总量均最高,而氮、磷养分的循环再利用率则表现为吉林地区最高。东北地区农牧结合系统中,黑龙江地区氮素利用率高于其他地区,辽宁地区的磷素利用率高于吉林和黑龙江地区。吉林和辽宁地区的氮、磷养分损失率分别高于其他地区。因此,需要针对不同地区的养分流动特征提出农牧管理方面合理化建议,为东北地区的农牧业可持续发展提供依据。  相似文献   

10.
新疆小麦、玉米的产量和氮磷钾肥利用效率   总被引:2,自引:0,他引:2  
【目的】明确新疆小麦、玉米化肥利用效率现状,进一步优化养分管理,提高化肥利用效率,为新疆乃至全国粮食安全提供基础数据和技术支撑。【方法】2018—2020年,在新疆主要粮食种植区开展72个田间试验(小麦40个、玉米32个),设置氮磷钾(NPK)、无氮(PK)、无磷(NK)、无钾(NP)4个处理,3次重复,分析新疆当前施肥条件下小麦、玉米的养分吸收,氮、磷、钾肥产量反应,农学效率,肥料利用率等特征。【结果】(1)新疆小麦氮(N)、磷(P2O5)、钾肥(K2O)平均施用量分别为233.1、128.0和75.5 kg·hm-2,玉米氮、磷、钾肥平均施用量分别为254.9、148.0和67.8 kg·hm-2。(2)小麦NPK处理平均产量为7 504 kg·hm-2,氮、磷、钾肥的平均产量反应分别为2 206 kg·hm-2(500—3 795 kg·hm-2)、2 016 kg·hm-2(288—4 230 kg·hm-2)和1 362 kg·hm-2(105—2 910 kg·hm-2),施氮、磷、钾肥的平均增产率分别为45.0%、39.7%和23.0%;玉米NPK处理平均产量为13 715 kg·hm-2,氮、磷、钾肥的平均产量反应分别为4 657 kg·hm-2(1 559—6 900 kg·hm-2)、1 942 kg·hm-2(473—4 699 kg·hm-2)和1 297 kg·hm-2(113—5 440 kg·hm-2),施氮、磷、钾肥的平均增产率分别为52.2%、21.2%和15.5%。玉米施氮肥的产量反应明显高于小麦。(3)NPK处理中,每形成100 kg小麦籽粒需氮(N)2.7 kg(1.7—4.0 kg)、磷(P2O5)0.8 kg(0.4-1.3 kg)、钾(K2O)2.1 kg(1.2—3.9 kg);每形成100 kg玉米籽粒需氮(N)2.1 kg(1.5-2.9 kg)、磷(P2O5)0.8 kg(0.4-1.2 kg)、钾(K2O)2.1 kg(0.7—3.4 kg)。(4)新疆小麦氮、磷、钾肥的平均农学效率分别为9.6、15.9和18.7 kg·kg-1,磷、钾肥显著高于氮肥;玉米氮、磷、钾肥的平均农学效率分别为18.7、13.4和18.1 kg·kg-1,氮、钾肥显著高于磷肥。玉米氮肥的农学效率高于小麦,磷、钾肥的农学效率两种作物差异不大。(5)新疆小麦氮、磷、钾肥的平均利用率分别为41.4%、21.8%和45.2%;玉米氮、磷、钾肥的平均利用率分别为46.9%、20.5%和49.6%。小麦、玉米的氮、钾肥利用率均显著高于磷肥。【结论】当前新疆小麦、玉米产量水平较高,氮、磷、钾肥利用效率已处于较高水平,氮、钾肥的利用率显著高于磷肥。小麦、玉米对缺氮最为敏感,其次对缺磷,缺钾的减产幅度最低。当前新疆小麦、玉米的氮肥施用量较合理,施钾量不足,小麦存在过量施磷。今后需加大小麦、玉米的钾肥投入,减少小麦的磷肥投入。  相似文献   

11.
东北玉米化肥减施增效技术途径探讨   总被引:22,自引:1,他引:21  
减肥增效是提高我国玉米竞争力、保护生态环境的重大需求。论文重点以东北玉米为研究对象,从玉米养分需求规律、养分高效品种的节肥潜力、化肥高效施用的4R技术、化肥的有机替代技术等方面论述减肥增效的技术途径。研究表明,东北地区每生产100 kg玉米籽粒产量的平均N、P_2O_5、K_2O的需求量范围分别为1.56—1.89、0.60—0.88和1.27—2.30 kg;吐丝后对氮磷的需求量分别占全生育期需求量的20%—30%和20%—40%,对籽粒氮磷的贡献率分别为20%—30%和30%—38%。在目前东北土壤生产力状况下,实现玉米12 000 kg·hm~(-2)的产量水平平均氮肥投入量约为180 kg·hm~(~(-2))。应用不同类型新型肥料的节约氮肥潜力为9—25 kg·hm~(-2),应用磷酸二铵和硫酸铵+过磷酸钙做启动肥可以促进苗期生长。应用高地隙追肥机可以有效延长追肥的适宜期,有利于使"养分供应匹配养分需求"。滴灌施肥技术适宜在风砂质地土壤及干旱频繁发生地区推广,实现增产19%—128%,产量可达12 000—13 000 kg·hm~(-2)。地下滴灌施肥技术增产效果相同,应该大力推广。利用主动冠层传感器Greenseeker,可以在春玉米V5-V8期很好地估测叶面积指数、地上部生物量以及植株吸氮量,并应用于变量、精准的氮肥推荐。因地制宜地应用秸秆还田技术,可以节省肥料投入,提升土壤质量。其中秸秆覆盖条耕技术(Strip-till)可以协调传统耕作与免耕的优点,有很好的应用前景。未来应该从农民实际应用的角度出发,将技术研究与技术推广相结合,针对不同的栽培耕作技术模式,建立农民可应用、或在不久的将来可应用的技术规程,实现大面积应用,达到区域性减肥增效的目标。  相似文献   

12.
阿旗草用燕麦生产调查及种植前景分析   总被引:2,自引:0,他引:2       下载免费PDF全文
阿鲁科尔沁旗有广阔的草场面积,是国内重要的肉牛肉羊生产基地,气候资源适宜燕麦生长,近年来苜蓿和燕麦草人工草场发展迅速。本文为了更好服务阿旗草用燕麦生产,准确掌握阿旗燕麦种植水平及种植收益情况,通过对阿旗人工草地燕麦的生产调查及综合各地研究结果的方法对草用燕麦种植结果进行总结,结果表明:(1)燕麦可作为沙地保护作物种植。在严重沙化草地上利用燕麦留下的根茬可以防风固沙,燕麦根茬地种植紫花苜蓿,避免风沙侵蚀苜蓿种子,确保紫花苜蓿苗全、苗齐、苗壮;也可以使用燕麦作为保护作物与苜蓿混播,紫花苜蓿播种时间也因此可以提前两个月,可以当年收割一次燕麦草和苜蓿草,提高了总体收益。(2)燕麦用于草地苜蓿倒茬作物。人工草地多种植紫花苜蓿,当苜蓿草地进入高产期后,苜蓿草地产草量开始下降,需要及时应用燕麦进行倒茬轮作。(3)燕麦与苜蓿等牧草混播建立放牧型草地。燕麦与苜蓿混播是国内外成型的技术措施,与苜蓿混播或与苜蓿、无芒雀麦等牧草作物混播建立放牧型草地,当年可获得一定的牧草收益。(4)燕麦青、干草是畜牧业的优质饲草,籽实是畜牧业的优质饲料。燕麦可以在各类土壤类型地块种植,需要选用适宜的品种适应一季作区或二季作区种植,有针对性地生产符合饲用目标的鲜、青、干饲草饲料,种植效益可以与苜蓿持平。(5)草用燕麦种植效益可观。燕麦是生态友好型作物,青刈燕麦可在拔节至开花期刈割,可以刈割两次,第一次留茬5~8 cm左右,一般每公顷产鲜草22500~30000 kg,晒制干草或青贮时应在乳熟期到蜡熟期刈割,一般可每公顷产鲜草30000~45000 kg,晒制干草后公顷产9000~13500 kg左右,二季种植一般可每公顷收益15000~24000元,在不能种植苜蓿的一季作燕麦区种植燕麦仍可有每公顷7500~13500元的收益。目前种植燕麦的投入水平均低于玉米、箭舌豌豆、苜蓿等牧草作物,采收期也不近相同,所以简单的进行种植效益对比就低估了燕麦的种植效益,增加对燕麦生产的水肥投入,采用规范种植技术指导生产,二季作燕麦区采收二季燕麦与种植苜蓿相比省工省投入效益相当,燕麦的种植效益是可观的。  相似文献   

13.
我国设施菜地表观氮平衡分析及其空间分布特征   总被引:3,自引:0,他引:3  
为定量评估区域设施菜地土壤氮素的输入输出平衡状况,探明土壤中氮素的基本去向和氮素潜在污染,从CNKI中文数据库和Web of Science等英文数据库中检索筛选出针对设施菜地氮循环研究的可用数据648组,对我国设施菜地表观氮素平衡进行了分析,并根据《全国设施蔬菜重点区域发展规划(2015—2020年)》中的蔬菜分区,探索了不同区域的氮平衡分布特征。结果表明,我国设施菜地每一生长季总体上表观氮平衡为正值,盈余量为49~1154 kg N·hm-2,均值为324 kg N·hm-2,氮肥利用率平均为18.6%。从氮素的输入途径来看,每季氮素总投入约为863 kg N·hm-2,以化肥和有机肥投入为主,分别为471、306 kg N·hm-2,灌溉水带入的氮也不容忽视,达到86 kg N·hm-2。从氮素的支出途径来看,每季氮素总支出为539 kg N·hm-2,其中除了作物生长从土壤中吸取大量的氮素(230 kg N·hm-2)外,以淋溶、硝化反硝化和氨挥发等形式损失的氮达到309 kg N·hm-2,占输出量的57.4%,超过了作物吸收带走的氮(42.6%)。每季区域氮平衡差异显著,其中,黄淮海与环渤海暖温区氮素盈余最高,达到441 kg N·hm-2,其较高氮投入和较低的作物吸收是造成农田土壤氮素大量盈余的主要原因,同时也存在较高的氮素损失,通过淋溶流失的氮达到186 kg N·hm-2。总体上,当前我国设施菜地整体表观氮平衡为正盈余,主要由于化肥和有机肥投入量大,但同时存在较高的氮素损失风险。降低氮素投入水平和提高作物的吸收利用率是有效的氮优化管理途径,尤其是在黄淮海与环渤海暖温区,应减少氮素投入,重点关注氮素淋溶损失。  相似文献   

14.
【目的】合理施肥是保证和维持油菜产量的关键。面对目前集约化的种植管理模式,肥料的粗放管理和施用势必造成养分效率的下降,从而影响油菜产量。本研究通过比较长江流域冬油菜种植区域农民习惯施肥与推荐施肥的产量和养分利用效率差异,为冬油菜肥料合理施用、提高肥料利用效率提供策略。【方法】选取2005—2016年长江流域(包括四川、贵州、湖北、湖南、安徽、江苏和浙江7个省份)的535个油菜田间试验,分析不施肥(CK)、农民习惯施肥(FP)和推荐施肥(RF)处理间以及长江流域各区域间的油菜产量和产量分布特征,比较不同施肥处理的增产效果,以及氮、磷、钾肥料用量和偏生产力的差异,计算RF处理与FP处理间施肥量的差值,评估长江流域氮、磷、钾肥的减施潜力。【结果】长江流域CK处理冬油菜产量主要分布在500—1 500 kg·hm~(-2),FP处理主要分布在1 500—3 000 kg·hm~(-2),RF处理最高,集中在2 000—3 000 kg·hm~(-2),土壤基础地力对RF处理油菜产量的贡献率为45.1%—49.7%;3个不同处理在区域间油菜的平均产量均表现为长江下游中游上游。长江上、中、下游FP处理油菜产量均值分别为2 033、2 182和2 542 kg·hm~(-2),RF处理油菜产量较FP分别增产16.7%、16.5%和13.9%,增产点比例达77.5%—94.9%。随着地力水平的提升,各个处理油菜增产率均表现出逐渐下降的趋势,RF处理在不同地力水平下亦呈现出明显的优势。比较RF与FP处理施肥量发现,长江流域FP处理施肥量均值为162.5—239.5 kg N·hm~(-2)、58.6—82.0 kg P_2O_5·hm~(-2)和45.5—60.8 kg K_2O·hm~(-2),而RF处理施肥量均值则为162.2—233.6 kg N·hm~(-2)、67.2—94.1 kg P_2O_5·hm~(-2)和73.6—108.5 kg K_2O·hm~(-2),两种施肥处理氮肥用量未表现出显著的差异,FP处理磷、钾肥用量偏低。与RF处理相比,PF处理氮肥可减施的点位比例最大,长江流域45.6%的点位能够减氮,25.6%的点位可以减磷,钾肥减施点位的比例仅为13.2%。同时,需要增施氮、磷、钾肥的比例分别为37.8%、60.0%和75.9%。区域间肥料用量以长江下游适宜点位比例最大,氮、磷、钾肥适宜用量的点位比例分别为25.0%、22.8%和17.1%。长江流域FP处理的氮、磷、钾肥偏生产力均值分别为11.1—14.2、28.6—45.8和38.3—47.6 kg·kg~(-1)。RF在FP处理的基础上提高了氮肥偏生产力12.9%—15.9%,但与其他发达国家相比仍处于较低水平;而RF处理的磷、钾偏生产力与FP相比有所下降,平均降低幅度分别为6.9%和19.6%,也表明目前推荐的施肥量仍然存在减肥的空间。【结论】与农民习惯施肥相比,推荐施肥显著增加了油菜产量,且农民习惯的肥料用量存在较大的调整空间。  相似文献   

15.
夏玉米施用不同缓释化处理氮肥的效果及氮肥去向   总被引:6,自引:3,他引:3  
【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014-2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0-100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0-100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm-2,其次是凝胶尿素,为222.5 kg·hm-2。脲甲醛的0-100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm-2,树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm-2。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm-2,控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm-2。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。  相似文献   

16.
无芒雀麦和紫花苜蓿在(1:1)混播中的竞争与共存   总被引:3,自引:2,他引:1  
【目的】在豆科与禾本科牧草混播草地中不仅存在种内竞争也存在种间竞争,由于不同植物之间竞争力强弱不同,竞争的结果将出现一方逐渐消退,另一方逐渐占据优势的现象,因此研究豆科与禾本科牧草之间竞争与共存机制对于维持混播草地稳定高产具有重要意义。【方法】在温室栽培条件下设置3个氮肥水平(0, 75, 150 kg N·hm-2,记作N0, N75, N150)以及单播和混播两种种植模式(无芒雀麦单播,紫花苜蓿单播,无芒雀麦和紫花苜蓿1﹕1混播),采用相对生物量(RY)、相对密度(RD)、竞争率(CR)和相对产量总值(RYT)以及紫花苜蓿的固氮比例(%Ndfa)和转氮比例(%N Trans)等指标研究无芒雀麦和紫花苜蓿在1﹕1混播中的竞争关系与共存机制。【结果】施氮量从0增加到150 kg N·hm-2,单播中无芒雀麦的地上和地下生物量和分蘖数显著增加(P<0.05),而紫花苜蓿的地上和地下生物量和分枝数无显著变化(P>0.05)。在混播中无芒雀麦的地上和地下生物量和分蘖数也显著增加(P<0.05),在一定程度上抑制了紫花苜蓿的生物量和分枝数。另外,在混播中无芒雀麦以增加分蘖数的方式来扩张地上空间的能力要强于紫花苜蓿。无芒雀麦的单株生物量和分蘖数在混播模式下都极显著高于单播(P<0.01),而紫花苜蓿的单株生物量和分枝数在混播模式下极显著低于单播(P<0.01)。在混播中无芒雀麦的竞争率始终大于1.0,而紫花苜蓿的竞争率始终小于1.0,这说明无芒雀麦的竞争力要大于紫花苜蓿的竞争力,且在整个生育期中,无芒雀麦的竞争力逐渐减弱,而紫花苜蓿的竞争力逐渐增强。在N0处理下,第2次、第3次和第4次取样时,无芒雀麦和紫花苜蓿的相对产量总值(RYT)显著大于1.0(P<0.05),说明无芒雀麦和紫花苜蓿无明显的竞争效应,这主要归功于紫花苜蓿的生物固氮对无芒雀麦的贡献(地上部转移的氮素占无芒雀麦氮素含量的15.26%-29.92%)。在N75和N150处理下,其RYT值与1.0无显著差异(P>0.05)。另外,施入氮肥明显抑制了紫花苜蓿的生物固氮比例和对无芒雀麦的氮素转移的比例,导致混播中无芒雀麦和紫花苜蓿同时竞争土壤氮素和肥料氮。【结论】施入75和150 kg N·hm-2的氮肥增强了无芒雀麦的竞争力,而抑制了紫花苜蓿的生物固氮和对无芒雀麦氮素的转移,二者促进作用减弱,竞争效应增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号