首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Development of new catalysts for deep hydrodesulfurization of gas oil   总被引:3,自引:0,他引:3  
TiO2–Al2O3 composite supports have been prepared by chemical vapor deposition (CVD) over γ-Al2O3 substrate, using TiCl4 as the precursor. High dispersion of TiO2 overlayer on the surface of Al2O3 has been obtained, and no cluster formation has been detected. The catalytic behavior of Mo supported on Al2O3, TiO2 and TiO2–Al2O3 composite has been investigated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the Mo catalysts supported on TiO2–Al2O3 composite, in particular for the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much higher than that of conversion obtained over Mo catalyst supported on Al2O3. The ratio of the corresponding cyclohexylbenzenes/biphenyls is increased over Mo catalyst supported on TiO2–Al2O3 composite support. This means that the reaction rate of prehydrogenation of an aromatic ring rather than the rate of hydrogenolysis of C–S bond cleavage is accelerated for the HDS of DBT derivatives. The Mo/TiO2–Al2O3 catalyst leads to higher catalytic performance for deep HDS of gas oil.  相似文献   

2.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

3.
Mo---Co or Mo---Ni catalysts supported on alumina (Al2O3) have been widely used for hydrodesulfurization (HDS) of heavy petroleum fractions. In order to enhance the catalytic activities for HDS, a composite type support (TiO2-Al2O3) prepared by the chemical vapor deposition (CVD) method has been studied. We found that Mo catalyst supported on TiO2-Al2O3 showed much higher catalytic activity for HDS of dibenzothiophene derivatives than the catalysts supported on Al2O3.  相似文献   

4.
Alumina–titania supports containing 5–50 wt.% of TiO2 were prepared by coprecipitation method using inorganic precursors (sodium aluminate and titanium chloride). DTA-TGA, XRD, SEM, TPDNH3, and IR spectroscopy were used to characterise these materials. The study shows that the promoting effect of nickel on the HDS activity of molybdenum catalysts supported on Al2O3TiO2 is significantly lower than that for molybdenum catalyst supported on Al2O3, and depends on the TiO2 content. The SEM results show that in the case of rich Al support (20 wt.% of TiO2) molybdenum was aggregated on the external surface of the catalyst, whereas it was uniformly dispersed on the external surface of alumina. Results also show that molybdenum is preferably supported on aluminum oxide. Application of Al2O3TiO2 oxides enhances the HDN activity of nickel–molybdenum catalysts. The highest HDN efficiency was obtained for the NiMo/Al2O3TiO2 catalyst containing 50 wt.% of TiO2. HDN activity was found to depend on protonic acidity and anatase content.  相似文献   

5.
Supported nickel phosphides were prepared by treating an amorphous Ni–B alloy on silica–alumina support with phosphine (15 vol.% PH3/H2) at relatively low temperature. The amorphous Ni–B/SiO2–Al2O3 precursors were synthesized by silver-induced electroless plating. The amorphous precursors and catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, BET surface area and inductively coupled plasma measurements. The transmission electron micrographs of the Ni2P/SiO2–Al2O3 particles with their size ranging from 60 to 80 nm showed that they were homogeneously dispersed over the SiO2–Al2O3 support. The as-prepared catalysts exhibited an excellent catalytic activity in the hydrodesulfurization (HDS) of dibenzothiophene.  相似文献   

6.
Co–Mo model sulfide catalysts, in which CoMoS phases are selectively formed, were prepared by means of a CVD technique using Co(CO)3NO as a precursor of Co. It is shown by means of XPS, FTIR and NO adsorption that CoMoS phases form selectively when the Mo content exceeds monolayer loading. A single exposure of MoS2/Al2O3 to a vapor of Co(CO)3NO at room temperature fills the edge sites of the MoS2 particles. It is suggested that the maximum potential HDS activity of MoS2/Al2O3 and Co–Mo/Al2O3 catalysts can be predicted by means of Co(CO)3NO as a “probe” molecule. An attempt was made to determine the fate of Co(CO)3NO adsorbed on MoS2/Al2O3. The effects of the support on Co–Mo sulfide catalysts in HDS and HYD were investigated by use of CVD-Co/MoS2/support catalysts. XPS and NO adsorption showed that model catalysts can also be prepared for SiO2-, TiO2- and ZrO2-supported catalysts by means of the CVD technique. The thiophene HDS activity of CVD-Co/MoS2/Al2O3, CVD-Co/MoS2/TiO2 and CVD-Co/MoS2/Al2O3 is proportional to the amount of Co species interacting with the edge sites of MoS2 particles or CoMoS phases. It is concluded that the support does not influence the HDS reactivity of CoMoS phases supported on TiO2, ZrO2 and Al2O3. In contrast, CoMoS phases on SiO2 show catalytic features characteristic of CoMoS Type II. With the hydrogenation of butadiene, on the other hand, the Co species on MoS2/TiO2, ZrO2 and SiO2 have the same activity, while the Co species on MoS2/Al2O3 have a higher activity.  相似文献   

7.
Catalytic activities of Al2O3–TiO2 supporting CoMo and NiMo sulfides (CoMoS and NiMoS) catalysts were examined in the transalkylation of isopropylbenzene and hydrogenation of naphthalene as well as the hydrodesulfurization (HDS) of model sulfur compounds, conventional gas oil (GO), and light cycle oil (LCO). Al2O3–TiO2 supporting catalysts exhibited higher activities for these reactions except for the HDS of the gas oil than a reference Al2O3 supporting catalyst, indicating the correlation of these activities. Generally, more content of TiO2 promoted the activities. Inferior activity of the catalyst for HDS of the gas oil is ascribed to its inferior activity for HDS of dibenzothiophene (DBT) in gas oil as well as in model solvent decane, while the refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) in gas oil as well as in decane was more desulfurized on the catalyst. Characteristic features of Al2O3–TiO2 catalyst are discussed based on the paper results.  相似文献   

8.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

9.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

10.
MoNi/Al2O3 catalysts have been widely used for hydrodesulphurisation of oil fractions. In order to enhance the catalytic activities for HDS and HDN, catalysts supported on titania-modified alumina carriers have been studied. The MoNi/Al2O3–TiO2catalysts were characterised by benzene sorption, ammonia sorption, temperature programmed reduction, X-ray diffraction and scanning electron microscopy. The supports effect was examined by comparing thiophene conversion and sulphur or nitrogen contents in diesel oil fraction.  相似文献   

11.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

12.
Ag-based catalysts supported on various metal oxides, Al2O3, TiO2, and TiO2–Al2O3, were prepared by the sol–gel method. The effect of SO2 on catalytic activity was investigated for NO reduction with propene under lean burn condition. The results showed the catalytic activities were greatly enhanced on Ag/TiO2–Al2O3 in comparison to Ag/Al2O3 and Ag/TiO2, especially in the low temperature region. Application of different characterization techniques revealed that the activity enhancement was correlated with the properties of the support material. Silver was highly dispersed over the amorphous system of TiO2–Al2O3. NO3 rather than NO2 or NOx reacted with the carboxylate species to form CN or NCO. NO2 was the predominant desorption species in the temperature programmed desorption (TPD) of NO on Ag/TiO2–Al2O3. More amount of formate (HCOO) and CN were generated on the Ag/TiO2–Al2O3 catalyst than the Ag/Al2O3 catalyst, due to an increased number of Lewis acid sites. Sulfate species, resulted from SO2 oxidation, played dual roles on catalytic activity. On aged samples, the slow decomposition of accumulated sulfate species on catalyst surface led to poor NO conversion due to the blockage of these species on active sites. On the other hand, catalytic activity was greatly enhanced in the low temperature region because of the enhanced intensity of Lewis acid site caused by the adsorbed sulfate species. The rate of sulfate accumulation on the Ag/TiO2–Al2O3 system was relatively slow. As a consequence, the system showed superior capability for selective adsorption of NO and SO2 toleration to the Ag/Al2O3 catalyst.  相似文献   

13.
Four series of cobalt-based catalysts, such as bare Co3O4 and CoO, CoOx–CeO2 mixed oxides, CoOx supported over alumina and alumina–baria and CoMgAl and CoNiAl hydrotalcites have been synthesized and investigated for the oxidative degradation of phenol in the presence of ozone. Characterizations were obtained by several techniques in order to investigate the nature of cobalt species and their morphological properties, depending on the system. Analyses by XRD, BET, TPR, UV–visible diffuse reflectance spectroscopy and TG/DT were performed.

The CoNiAl hydrotalcite exhibits, after 4 h of reaction, the highest phenol ozonation activity followed by Co(3 wt%)/Al2O3–BaO and CoMgAl. The samples Co(1 wt%)/Al2O3–BaO and Co(1 and 3 wt%)/Al2O3 show a comparable medium activity, while the oxidation properties of bare oxides Co3O4, CoO and CoOx–CeO2 are really low. Leaching of cobalt ions in the water solution was detected during the reaction, the amount varied depending on the nature of catalysts. A massive release was observed for the CoMgAl and CoNiAl hydrotalcites, while cobalt catalysts over alumina and alumina–baria look much more stable. The recycle of CoOx/Al2O3 and CoOx/Al2O3–BaO was studied by performing three consecutive cycles in the phenol oxidation. Because of the potential interest of the cobalt-supported catalysts in the ozonation process, the oxidative degradation of naphtol blue black was also investigated.

On the basis of TPR and UV–visible results it appears that highly dispersed Co2+ ions especially present over Co(3 wt%)/Al2O3–BaO are the main active sites for phenol and naphtol blue black oxidative degradation by ozone.  相似文献   


14.
The oxidation of perchloroethylene (PCE) was investigated over chromium oxide catalysts supported on SiO2, SiO2–Al2O3, activated carbon, mordenite type zeolites, MgO, TiO2 and Al2O3. Supported chromium oxide catalysts were more active than any other metal oxide catalysts including noble metal examined in the present study. PCE removal activity of chromium oxide catalysts mainly depended on the type of supports and the content of metal loaded on the catalyst surface. TiO2 and Al2O3 containing high surface areas were effective for the high performance of PCE removal, since the formation of well dispersed Cr(VI) active reaction sites for the present reaction system, was enhanced even for the high Cr loading on the catalyst surface. CrOx catalysts supported on TiO2 and Al2O3 also exhibited stable PCE removal activity at a low feed concentration of PCE of 30 ppm up to 100 h at 350°C. However, significant catalyst deactivation was observed at high PCE concentration of 10 000 ppm. CrOx/TiO2 revealed stronger water tolerance than CrOx/Al2O3 due to the surface hydrophobicity.  相似文献   

15.
Support effects form important aspect of hydrodesulfurization (HDS) studies and mixed oxide supports received maximum attention in the last two decades. This review will focus attention on studies on mixed oxide supported Mo and W catalysts. For convenience of discussion, these are divided into Al2O3 containing mixed oxide supports, TiO2 containing mixed oxide supports, ZrO2 containing mixed oxide supports and other mixed oxide supports containing all the rest. TiO2 containing mixed oxides received maximum attention, especially TiO2–Al2O3 supported catalysts. A brief discussion about their prospects for application to ultradeep desulfurization is also included. An overview of the available literature with emphasis on research carried out in our laboratory form the contents of this publication.  相似文献   

16.
The typical physico-chemical properties and their hydrodesulfurization activities of NiMo/TiO2-Al2O3 series catalysts with different TiO2 loadings were studied. The catalysts were evaluated with a blend of two kinds of commercially available diesels in a micro-reactor unit. Many techniques including N2-adsorption, UV–vis DRS, XRD, FT-Raman, TPR, pyridine FT-IR and DRIFT were used to characterize the surface and structural properties of TiO2-Al2O3 binary oxide supports and the NiMo/TiO2-Al2O3 catalysts. The samples prepared by sol–gel method possessed large specific surface areas, pore volumes and large average pore sizes that were suitable for the high dispersion of nickel and molybdenum active components. UV–vis DRS, XRD and FT-Raman results indicated that the presence of anatase TiO2 species facilitated the formation of coordinatively unsaturated sites (CUS) or sulfur vacancies, and also promoted high dispersion of Mo active phase on the catalyst surfaces. DRIFT spectra of NO adsorbed on the pure MoS2 and the catalysts with TiO2 loadings of 15 and 30% showed that NiMo/TiO2-Al2O3 catalysts possessed more CUS than that of pure MoS2. HDS efficiencies and the above characterization results confirmed that the incorporation of TiO2 into Al2O3 could adjust the interaction between support and active metals, enhanced the reducibility of molybdenum and thus resulted in the high activity of HDS reaction.  相似文献   

17.
Noble metal (Rh, Pt, Pd, Ir, Ru, and Ag) and Ni catalysts supported on CeO2–Al2O3 were investigated for water gas shift reaction at ultrahigh temperatures. Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 demonstrated as the best catalysts in terms of activity, hydrogen yield and hydrogen selectivity. At 700 °C and steam to CO ratio of 5.2:1, Pt/CeO2–Al2O3 converted 76.3% of CO with 94.7% of hydrogen selectivity. At the same conditions, the activity and hydrogen selectivity for Ru/CeO2–Al2O3 were 63.9% and 85.6%, respectively. Both catalysts showed a good stability over 9 h of continuous operation. However, both catalysts showed slight deactivation during the test period. The study revealed that Pt/CeO2–Al2O3 and Ru/CeO2–Al2O3 were excellent ultrahigh temperature water gas shift catalysts, which can be coupled with biomass gasification in a downstream reactor.  相似文献   

18.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

19.
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.  相似文献   

20.
Toughening alumina with silver and zirconia inclusions   总被引:4,自引:0,他引:4  
Both silver and zirconia inclusions are added into an alumina matrix, the strength and toughness of the composites are determined. The toughening agents prohibit the grain growth of the matrix, the strength of alumina is, therefore, enhanced. The addition of two toughening agents also enhances the toughness of alumina. The presence of Ag inclusions raises the transformation ability of ZrO2; however, the toughness increase of the Al2O3–ZrO2–Ag composites is slightly lower than the sum of the toughness increase of Al2O3–ZrO2 and of Al2O3–Ag composites. The present study demonstrates that the toughening effects contributed by a transformation toughening agent and a ductile toughening agent can interact with each other; nevertheless, such interaction depends strongly on the microstructure of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号