首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A reproducible high-resolution protein separation method is the basis for a successful differential proteome analysis. Of the techniques currently available, two-dimensional gel electrophoresis is most widely used, because of its robustness under various experimental conditions. With the introduction of narrow range immobilized pH gradient (IPG) strips (also referred to as ultra-zoom gels) in the first dimension, the depth of analysis, i.e. the number of proteins that can be resolved, has increased substantially. However, for poorly understood reasons isoelectric focusing on ultra-zoom gels in the alkaline region above pH 7 has suffered from problems with resolution and reproducibility. To tackle these difficulties we have optimized the separation of semipreparative amounts of proteins on alkaline IPG strips by focusing on two important phenomena: counteracting water transport during isoelectric focusing and migration of dithiothreitol (DTT) in alkaline pH gradients. The first problem was alleviated by the addition of glycerol and isopropanol to the focusing medium, leading to a significant improvement in the resolution above pH 7. Even better results were obtained by the introduction of excess of the reducing agent DTT at the cathode. With these adaptations together with an optimized composition of the IPG strip, separation efficiency in the pH 6.2-8.2 range is now comparable to the widely used acidic ultra-zoom gels. We further demonstrated the usefulness of these modifications up to pH 9.5, although further improvements are still needed in that range. Thus, by extending the range covered by conventional ultra-zoom gels, the depth of analysis of two-dimensional gel electrophoresis can be significantly increased, underlining the importance of this method in differential proteomics.  相似文献   

2.
In conventional isoelectric focusing in soluble, amphoteric buffers, it has been quite difficult to produce two-dimensional (2-D) separations in pH intervals greater than pH 4-8. In general more alkaline proteins were analyzed by non-equilibrium IEF in the first dimension. Even with the advent of immobilized pH gradients (IPG), separations could be extended to pH gradients not wider than pH 3-10, due to a lack of suitable buffers. Since more acidic and more alkaline acrylamido buffers have recently been synthesized, we have been able to optimize what is believed to be the widest possible immobilized pH gradient, a pH 2.5-11 span. We report here for the first time 2-D separations of total tissue lysates in such extended pH 2.5-11 gradients. It appears that, with the IPG technique, close to 100% of all possible cell products can be displayed in a single 2-D map.  相似文献   

3.
蝴蝶兰叶片蛋白质提取及双向电泳体系优化   总被引:1,自引:0,他引:1  
通过对蛋白质提取、IPG胶条选择、上样量、水化方式、聚焦条件等方面的优化,建立蝴蝶兰叶片蛋白质的双向电泳体系。结果表明,采用酚抽提法提取蝴蝶兰叶片蛋白质的纯度较高,复溶较完全;双向电泳优化体系选用24 cm pH 3~10 NL的IPG胶条,被动水化,上样量为1.35 mg,B1程序进行等电聚焦,12%分离胶进行第二向电泳,考马斯亮蓝G-250染色。该方法获得分辨率较高、重复性较好的蝴蝶兰叶片双向电泳图谱,蛋白数点多达1163个,可以满足蝴蝶兰蛋白质组学研究和分析。  相似文献   

4.
根霉12#发酵产生纤溶酶的酶学性质   总被引:5,自引:0,他引:5  
溶栓疗法是血栓性疾病安全有效的治疗手段,开发新型纤溶酶具有实际应用意义.分离自南方小酒药的根霉12豆粕和麸皮为原料可产生纤溶酶.已采用盐析,疏水层析、离子交换层析和凝胶层析方法对纤溶酶分离提纯.提纯的纤溶酶比活力2143u/mg(尿激酶单位),有直接溶解血栓和激活纤溶酶原的双重溶栓作用,降解纤维蛋白α、β和γ肽链速度快;最适作用温度45℃,适宜作用pH范围6.8~8.8;等电聚焦方法测定该酶等电点8.5±0.1;只分解生色底物N-Succinvl-Ala-Ala-Pro-Phe-pNA,其米氏常数Km为O.23mmol/L,酶转换数Kcat为16.36 s-1;Molish实验和甲苯胺蓝实验均证明该酶为糖蛋白,地衣酚-硫酸法测得该酶含糖量4.70%;EDTA、PMSF、PCMB对该纤溶酶有抑制作用,说明活性中心含有巯基、金属和丝氨酸;N端12个氨基酸序列为NH2-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-Gly,与其它生物来源的纤溶酶相比较没有同源性.根霉12#产生的纤溶酶为新型纤溶酶,有希望开发成溶栓药物.  相似文献   

5.
The technique of isoelectric focusing on immobilized pH gradients (IPG) has been applied to the analysis of tryptic digests of alpha- and beta-chains of human hemoglobin. Using peptides purified by RP-HPLC as a reference, it was possible to create a peptide map in the single IEF dimension. Unfortunately, it was not possible to find experimental conditions (medium for migration and staining) which would allow the detection of peptides of less than 10-12 residues. Almost all the bands visible on the gel could be assigned to known peptides. In order to obtain these results the IPG runs were performed in 8 M urea containing 0.5% carrier ampholytes and the gel stained with colloidal Coomassie brilliant blue G-250, in the presence of a high-salt concentration and at acidic pH.  相似文献   

6.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

7.
A method for analytical isoelectric focusing (IEF) of apolipoprotein E (apoE) in immobilized pH gradients (IPG) and immunodetection of the separated isoforms has been developed for use with either very low density lipoproteins (VLDL) or whole plasma. Both VLDL and plasma were sequentially delipidated with 1,4-dioxane, acetone-ethanol, and ether. Neuraminidase treatment preceded the delipidation when required. Using preformed plates, pH 5.0-6.0 (LKB, Bromma) after rehydration with 6 M urea and dextran T-10, the IPG focusing pattern of the common isoforms (E2, E3, E4) was found to be equivalent to conventional IEF with the added resolution of the E4 disialo form. The use of self-poured narrower gradients permitted the further resolution of the E4 monosialo form, a previously unrecognized heterogeneity of the E2, E3, and E4 monosialo isoforms and differentiation of the apoE2** mutant; all of these forms comigrate with the common isoproteins in conventional IEF. Finally, the conditions for IPG of whole plasma using apoE monoclonal antibodies and enzyme-conjugated anti-mouse IgG for detection were established. Thus, IPG focusing is shown to be a powerful method for resolution of the apoE sialoforms and apoE mutant forms. The method has important implications in accurate and diagnostic phenotyping. Moreover, it is a convenient method for phenotyping which requires only very small volumes of plasma.  相似文献   

8.
The oxidative modification of proteins plays a major role in a number of human diseases, but identity of the specific proteins that are most susceptible to oxidation has posed a difficult problem. Protein carbonyls are increased after oxidative stress, and after derivatization with 2,4-dinitrophenyl hydrazine (DNP) they can be detected by various analytical and immunological methods. Although high resolution two-dimensional electrophoresis (2-DE) can resolve virtually all proteins present in a cell or tissue it has been difficult to determine the oxidized proteins because the DNP-derivatization process alters the isoelectric points of proteins, and additional procedures must be utilized to remove reaction byproducts. These additional procedures can lead to loss of sample, and poor isoelectric resolution on immobilized pH gradient (IPG) strips. We have developed a method that allows the IPG strips to be derivatized with DNP directly following isoelectric focusing of the proteins. This method allows the visualization of oxidized proteins by 2-DE with high reproducibility.  相似文献   

9.
The heterogeneity of histidine decarboxylase from rat gastric mucosa was studied. The partially purified enzyme was fractionated by preparative isoelectric focusing on a flat-gel bed by using narrow pH-range carrier ampholytes and a short focusing time. The activity was resolved, with about 95% recovery, into three forms, designated I, II and III, with pI values of 5.90, 5.60 and 5.35 respectively. These three forms exhibited similar molecular weights, indicating that the forms were not the result of different degrees of polymerization. By preparative refocusing each form refocused as a single peak of enzyme activity with reproducible pI, but a high loss of activity occurred with repeated focusing. Forms I, II and III were purified by the combined use of preparative isoelectric focusing and gel chromatography and other fractionation methods. The active forms could be distinguished by electrophoresis and isoelectric focusing on polyacrylamide gels and displayed protein heterogeneity. These forms were found in the crude extract and in the partially purified preparations in the presence or absence of proteinase inhibitors. Form II had the highest specific activity, but all three forms had the same optimum pH and Km value for histidine.  相似文献   

10.
A Karmali  L R Santos 《Biochimie》1988,70(10):1373-1377
Peroxidase (Ec 1.11.1.7) was purified from needles of Pinus pinaster to apparent homogeneity by DE-52 cellulose chromatography with a final recovery of enzyme activity of about 85%. The purified enzyme (A402/A275 = 1.05) had a specific activity of about 948 U/mg of protein and ran as a single protein band both on SDS-PAGE and native PAGE with Mr of 37,000 and 151,000, respectively. Both native PAGE and isoelectric focusing gels of the purified enzyme were stained for activity which coincided with the protein band. The pI of the purified enzyme was found to be 3.2 by isoelectric focusing on an ultrathin polyacrylamide gel. The enzyme has an optimum pH of activity of 5.0 and temperature optimum of 30 degrees C. Stability studies of the enzyme as a function of pH and temperature suggest that it is most stable at pH 5.0 and 0-40 degrees C, respectively.  相似文献   

11.
Membrane protein analyses have been notoriously difficult due to hydrophobicity and the general low abundance of these proteins compared to their soluble cytosolic counterparts. Shotgun proteomics has become the preferred method for analyses of membrane proteins, in particular the recent development of peptide immobilized pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two-dimensional shotgun proteomics. Recently, peptide IPG-IEF has been shown to be a valuable shotgun proteomics technique through the use of acidic narrow range IPG strips, which demonstrated that small acidic p I increments are rich in peptides. In this study, we assess the utility of both broad range (BR) (p I 3-10) and narrow range (NR) (p I 3.4-4.9) IPG strips for rat liver membrane protein analyses. Furthermore, the use of these IPG strips was evaluated using label-free quantitation to demonstrate that the identification of a subset of proteins can be improved using NR IPG strips. NR IPG strips provided 2603 protein assignments on average (with 826 integral membrane proteins (IMPs)) compared to BR IPG strips, which provided 2021 protein assignments on average (with 712 IMPs). Nonredundant protein analysis demonstrated that in total from all experiments, 4195 proteins (with 1301 IMPs) could be identified with 1428 of these proteins unique to NR IPG strips with only 636 from BR IPG strips. With the use of label-free quantitation methods, 1659 proteins were used for quantitative comparison of which 319 demonstrated statistically significant increases in normalized spectral abundance factors (NSAF) in NR IPG strips compared to 364 in BR IPG strips. In particular, a selection of six highly hydrophobic transmembrane proteins was observed to increase in NSAF using NR IPG strips. These results provide evidence for the use of alternative pH gradients in combination to improve the shotgun proteomic analysis of the membrane proteome.  相似文献   

12.
An image based two-dimensional (2-D) reference map of very alkaline yeast cell proteins was established by using immobilized pH gradients (IPG) up to pH 12 (IPG 6-12, IPG 9-12 and IPG 10-12) for 2-D electrophoresis and by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mass fingerprinting for spot identification. Up to now 106 proteins with theoretical isoelectric points up to pH 11.15 and molecular mass between 7.5 and 115 kDa were localized and identified. Additionally, due to the improved resolution of steady-state isoelectric focussing with IPGs, even low copy number proteins with codon bias below 0.02 were detected and identified.  相似文献   

13.
Horseradish peroxidase has been fractionated by preparative isoelectric focusing in a density gradient and in a layer of granulated gel using pH-3-10 and narrow-pH-range carrier ampholytes at different total enzyme loads. The resolution of peroxidase isoenzymes in preparative-layer isoelectric focusing was comparable to that obtained by analytical thin-layer isoelectric focusing. Isoelectrically homogeneous isoenzymes could be isolated with good recovery in a single fractionation step. Despite the excellent separation of the individual isoenzymes by isoelectric focusing in gel layers, an effective purification, indicated by the absorbance ratio A403mn/A278nm, could not be achieved by focusing applied as a single step. By different fractionation sequences combining gel chromatography, ion-exchange chromatography, and isoelectric focusing, individual isoenzymes with a high purity and homogeneous with respect to their size and charge properties have been isolated.  相似文献   

14.
A new acrylamido buffer has been synthesized, for use in isoelectric focusing in immobilized pH gradients. This compound (2-acrylamido glycolic acid) has a pK = 3.1 (at 25 degrees C, 20 mM concentration during titration) and is used, by titration with the pK 9.3 Immobiline, to produce a linear pH gradient in the pH 2.5-3.5 interval. Pepsin (from pig stomach) focused in this acidic pH gradient is resolved into four components, two major (with pI values 2.76 and 2.78) and two minor (having pI values 2.89 and 2.90). This is the first time that such strongly acidic proteins could be focused in an immobilized pH gradient. Even in conventional isoelectric focusing in amphoteric buffers it has been impossible to focus reproducibly very-low-pI macromolecules.  相似文献   

15.
螺旋藻氢酶的纯化与生化特性   总被引:3,自引:0,他引:3  
本研究用DE-52、SephadexG-75、SephadexG-100柱层析从螺旋藻分离纯化得到比活性提高200倍的氢酶,回收率为14%。凝胶柱层析和SDS-PAGE显示一条带,其分子量为56kd。氨基酸分析结果表明酸性氨基酸比例较大,等电聚焦测定结果证明其等电点为pH4.2。吸收光谱结果显示氢酶是铁硫蛋白。甲基紫晶(MV)是氢酶催化放氢的最佳电子供体,其Km(MV)为0.31mmol/L,最适pH值为7.5-8.0。  相似文献   

16.
The NADP+-specific glutamate dehydrogenase fromEscherichia coli has been purified to electrophoretic homogeneity. The enzyme was purified 40-fold and has a specific activity of 23. Glutamate dehydrogenase fromE. coli is a hexameric enzyme with a native molecular weight of 275 KDa composed of monomers each with a molecular weight of 44.5 KDa. In nondenaturing isoelectric focusing gels, the purified enzyme is resolved into six catalytically active species, each with a molecular weight of 275 KDa and with isoelectric points ranging between pH 5.3 and 5.7. The Km values for substrates and coenzymes have been determined, and the effect of several divalent ions on catalytic activity has been investigated.  相似文献   

17.
Prenyltransferase (EC 2.5.1.1) has been purified to homogeneity from the supernatant fraction of yeast by ammonium sulfate fractionation, diethylaminoethyl-cellulose and hydroxylapatite chromatography, and column isoelectric focusing techniques. The active enzyme from isoelectric focusing columns emerged as a single symmetrical peak with specific activities 15- to 35-fold higher than previously reported preparations. The enzyme was found to be homogeneous by continuous polyacrylamide gel electrophoresis at pH 8.4 and discontinuous polyacrylamide gel electrophoresis at pH 6.9 as well as sodium dodecyl sulfate polyacrylamide electrophoresis at pH 7.0. By means of gel chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, the protein was shown to be a dimer with a molecular weight of 84,000 plus or minus 10%. The isoelectric point of the enzyme was determined to be 5.3. The enzyme synthesizes farnesyl and geranylgeranyl pyrophosphates from dimethylallyl, geranyl, and farnesyl pyrophosphates. Michaelis constants for the enzyme were 4, 8, and 14 mu M for isopentenyl, dimethylallyl, and geranyl pyrophosphates, respectively.  相似文献   

18.
Rabbit testis arylsulphatase A was purified 140-fold with a recovery of 20% from detergent extracts of an acetone-dried powder by using DE-52 cellulose column chromatography, gel filtration on Sephadex G-200 and preparative isoelectric focusing. The purified enzyme showed one major band with one minor contaminant on electrophoresis in a 7.5% (w/v) polyacrylamide gel at pH8.3. On sodiumdodecyl sulphate/polyacrylamidegel electrophoresis, a single major band was observed with minor contaminants. The final preparation of enzyme was free from general proteolytic, esterase, hyaluronidase, beta-glucuronidase and beta-galactosidase activities. Rabbit testicular arylsulphatase A exists as a dimer of mol.wt. 110000 at pH7.1. At pH5.0 the enzyme is a tetramer of mol.wt. 220000. Arylsulphatase A appears to consist of two identical subunits of mol.wt. 55000 each. The highly purified enzyme has pI4.6. The enzyme hydrolyses p-nitrocatechol sulphate with Km and Vmax, of 4.1 mM and 80nmol/min respectively, but has no activity toward p-nitrophenyl sulphate. The pH optimum of the enzyme varies with the incubation time. By applying Sephacex G-200 chromatography and preparative isoelectric focusing, one form of enzyme was obtained. The enzyme has properites common to arylsulphatase A of other sources with respect to the anomalous time-activity relationship, pI, inhibition by PO42-, SO32- and Ag+ ions and substrate affinity to p-nitrocatechol sulphate. However, the enzyme shows the temperature optimum of arylsulphatase B of other species.  相似文献   

19.
Bacillus amyloliquefaciens DC-4, which produces a strongly fibrinolytic enzyme, was isolated from douchi, a traditional Chinese soybean-fermented food. A fibrinolytic enzyme (subtilisin DFE) was purified from the supernatant of B. amyloliquefaciens DC-4 culture broth and displayed thermophilic, hydrophilic and strong fibrinolytic activity. Subtilisin DFE was demonstrated to be homogeneous by SDS-PAGE and isoelectric focusing electrophoresis, and has molecular mass of 28000 Da and a pI of 8.0. The optimal reaction pH value and temperature were 9.0 and 48 degrees C, respectively. Subtilisin DFE not only hydrolyzed fibrin but also several synthetic substrates, particularly Suc-Ala-Ala-Pro-Phe-pNA, and phenylmethylsulfony fluoride can completely inhibit its fibrinolytic activity. These results indicated that subtilisin DFE is a subtilisin-family serine protease, similar to nattokinase from Bacillus natto. The first 24 amino acid residues of the N-terminal sequence of subtilisin DFE were AQSVPYGVSQIKAPALHSQGFTGS, which is identical to that of subtilisin K-54, and different from that of NK and CK. Results from subtilisin DFE gene sequence analysis showed that subtilisin DFE is a novel fibrinolytic enzyme.  相似文献   

20.
Multiple forms of β-glucuronidase have been demonstrated using sucrose gradient and polyacrylamide gel isoelectric focusing techniques in 6 m urea. Microsomal β-glucuronidase, a membrane-bound enzyme, was solubilized from lysosome-free, Ca2+-precipitated microsomes by detergents and isolated by chromatography on columns of rabbit anti-rat preputial gland β-glucuronidase antibody bound to Sepharose. The enzyme has a pI of 6.7. Polyacrylamide gel isoelectric focusing resolves the microsomal enzyme into three components, each of which is protease sensitive. The protease-modified microsomal enzyme is very similar to several forms of β-glucuronidase in lysosomes. The lysosomal β-glucuronidase, isolated from osmotically shocked lysosomes, is very heterogeneous after isoelectric focusing over the range pI 5.4–6.0. The lysosomal enzyme can be resolved into 10–12 bands by polyacrylamide gel isoelectric focusing. The more acid forms of the lysosomal enzyme are neuraminidase sensitive, suggesting they may be sialoglycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号