首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nitrification has been believed to be performed only by autotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) until the recent discovery of ammonia-oxidizing archaea (AOA). Meanwhile, it has been questioned whether AOB are significantly responsible for NH(3) oxidation in acidic forest soils. Here, we investigated nitrifying communities and their activity in highly acidified soils of three subtropical forests in southern China that had received chronic high atmospheric N deposition. Nitrifying communities were analyzed using PCR- and culture (most probable number)-based approaches. Nitrification activity was analyzed by measuring gross soil nitrification rates using a (15) N isotope dilution technique. AOB were not detected in the three forest soils: neither via PCR of 16S rRNA and ammonia monooxygenase (amoA) genes nor via culture-based approaches. In contrast, an extraordinary abundance of the putative archaeal amoA was detected (3.2?×?10(8) -1.2?×?10(9) g?soil(-1) ). Moreover, this abundance was correlated with gross soil nitrification rates. This indicates that amoA-possessing archaea rather than bacteria were predominantly responsible for nitrification of the soils. Furthermore, sequences of the genus Nitrospira, a dominant group of soil NOB, were detected. Thus, nitrification of acidified subtropical forest soils in southern China could be performed by a combination of AOA and NOB.  相似文献   

2.
王奥  吴福忠  何振华  徐振锋  刘洋  谭波  杨万勤 《生态学报》2012,32(14):4371-4378
为了解季节性冻融作用对川西亚高山/高山地区土壤氨氧化微生物群落的影响,采用qPCR技术,以氨单加氧酶基因的α亚基(amoA)为标记,在生长阶段、冻结阶段、融化阶段中的9个关键时期调查了该地区不同森林群落:岷江冷杉(Abies faxoniana)原始林(PF)、岷江冷杉(A. faxoniana)和红桦(Betula albosinensis)混交林(MF)、岷江冷杉次生林(SF)土壤有机层的氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)丰度的特征。结果表明,三个森林群落土壤有机层中都具有相当数量的氨氧化细菌和古菌,均表现出从生长阶段至冻结阶段显著降低,在冻结阶段最低,但冻结阶段后显著增加,在融化阶段为全年最高的趋势。土壤氨氧化微生物类群结构(AOA/AOB)受负积温影响明显。冻结后期三个森林群落土壤负积温最大时,AOA数量明显高于AOB,但其他关键时期土壤氨氧化微生物类群结构与群落类型密切相关。高海拔的PF群落土壤有机层表现为AOA>AOB(冻结初期除外),低海拔的SF群落中表现为AOB>AOA(冻结后期除外),而MF群落则仅在融冻期和生长季节末期表现为AOB>AOA。这些结果为认识亚高山/高山森林及其相似区域的生态过程提供了一定的科学依据。  相似文献   

3.
Ammonia‐oxidizing archaea: important players in paddy rhizosphere soil?   总被引:11,自引:0,他引:11  
The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in paddy soil with different nitrogen (N) fertilizer amendments for 5 weeks were investigated using quantitative real-time polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE) jand clone library analysis based on the ammonia monooxygenase α-subunit ( amoA ) gene. Ammonia-oxidizing archaea predominated among ammonia-oxidizing prokaryotes in the paddy soil, and the AOA:AOB DNA-targeted amoA gene ratios ranged from 1.2 to 69.3. Ammonia-oxidizing archaea were more abundant in the rhizosphere than in bulk soil. Rice cultivation led to greater abundance of AOA than AOB amoA gene copies and to differences in AOA and AOB community composition. These results show that AOA is dominant in the rhizosphere paddy soil in this study, and we assume that AOA were influenced more by exudation from rice root (e.g. oxygen, carbon dioxide) than AOB.  相似文献   

4.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.  相似文献   

5.
The abundance and community composition of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the surface sediments of 2 different zones (Meiliang Bay and Eastern Lake Taihu) of Lake Taihu were investigated using real-time quantitative polymerase chain reaction and clone libraries. The amoA gene copy numbers in the surface sediment of Meiliang Bay ranged from 4.91?× 10(5) to 8.65?× 10(6) copies/g dry sediment for the archaeal amoA gene and from 3.74?× 10(4) to 3.86?× 10(5) copies/g dry sediment for the bacterial amoA gene, which were significantly higher than those of Eastern Lake Taihu (P?< 0.05). Concentrations of ammonia (NH(4)(+)), total nitrogen, organic matter, and pH of the sediments exhibited significantly negative correlations with the abundance of ammonia-oxidizing archaea or ammonia-oxidizing bacteria (P?< 0.05 or P?< 0.01, respectively). The potential nitrification rates show remarkable correlations with the copy numbers of the archaeal amoA gene. Diversity of the archaeal amoA gene in Eastern Lake Taihu was significantly higher than that of Meiliang Bay, whereas the bacterial amoA gene diversity was comparable for the 2 lake zones. The data obtained in this study would be useful to elucidate the role of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.  相似文献   

6.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H(2)O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 x 10(7) to 4.25 x 10(7) per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 x 10(5) to 2.79 x 10(6) per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira-like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil.  相似文献   

7.
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.  相似文献   

8.
Ammonia oxidation in marine and estuarine sediments plays a pivotal role in the cycling and removal of nitrogen. Recent reports have shown that the newly discovered ammonia-oxidizing archaea can be both abundant and diverse in aquatic and terrestrial ecosystems. In this study, we examined the abundance and diversity of ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) across physicochemical gradients in San Francisco Bay--the largest estuary on the west coast of the USA. In contrast to reports that AOA are far more abundant than beta-AOB in both terrestrial and marine systems, our quantitative PCR estimates indicated that beta-AOB amoA (encoding ammonia monooxygenase subunit A) copy numbers were greater than AOA amoA in most of the estuary. Ammonia-oxidizing archaea were only more pervasive than beta-AOB in the low-salinity region of the estuary. Both AOA and beta-AOB communities exhibited distinct spatial structure within the estuary. AOA amoA sequences from the north part of the estuary formed a large and distinct low-salinity phylogenetic group. The majority of the beta-AOB sequences were closely related to other marine/estuarine Nitrosomonas-like and Nitrosospira-like sequences. Both ammonia-oxidizer community composition and abundance were strongly correlated with salinity. Ammonia-oxidizing enrichment cultures contained AOA and beta-AOB amoA sequences with high similarity to environmental sequences. Overall, this study significantly enhances our understanding of estuarine ammonia-oxidizing microbial communities and highlights the environmental conditions and niches under which different AOA and beta-AOB phylotypes may thrive.  相似文献   

9.
【背景】对于环境样品中氨氧化古菌(Ammonia-oxidizing archaea,AOA)多样性的研究,利用amoA功能基因作为分子标记会比16SrRNA基因有更强的特异性和更高的分辨率,能更准确地反映环境样品中氨氧化古菌的种群结构和分布特征。然而,目前对amoA基因扩增子高通量测序的分析存在两大限制因素:一是缺乏相应的amoA基因参考数据库;二是AOA amoA基因在种水平上的相似性阈值未知,分析过程中没有明确的划分种水平操作分类单元(Operational taxonomic unit,OTU)的阈值。【目的】构建基于amoA功能基因序列分析氨氧化古菌多样性的方法,为基于高通量测序的功能微生物多样性分析提供参考。【方法】基于目前已通过分离纯化或富集培养获得的34株氨氧化古菌及功能基因数据库中收录的环境样品amoA基因序列,构建氨氧化古菌amoA基因参考数据库。通过菌株间两两比对获得的amoA基因相似度与16SrRNA基因相似度的相关性分析,确定amoA基因在种水平上的相似性阈值。基于MOTHUR软件平台,利用建立的参考数据库和确定的阈值对南海一个垂直水体剖面样品的amoA基因序列进行多样性分析。【结果】构建了含有26 091条序列信息的古菌amoA基因参考数据库,确定了89%作为分析过程中古菌amoA基因划分种水平OTU的阈值,对南海水体样品氨氧化古菌的多样性分析结果很好地显示了南海不同深度水层水体中氨氧化古菌的种群结构和系统发育关系,有效揭示了南海氨氧化古菌的垂直分布差异。【结论】建立了基于amoA基因高通量测序的氨氧化古菌多样性分析方法,此方法可以有效分析环境样品中氨氧化古菌的多样性。  相似文献   

10.
Ammonia-oxidizing archaea (AOA) play an important role in nitrification and many studies exploit their amoA genes as marker for their diversity and abundance. We present an archaeal amoA consensus phylogeny based on all publicly available sequences (status June 2010) and provide evidence for the diversification of AOA into four previously recognized clusters and one newly identified major cluster. These clusters, for which we suggest a new nomenclature, harboured 83 AOA species-level OTU (using an inferred species threshold of 85% amoA identity). 454 pyrosequencing of amoA amplicons from 16 soils sampled in Austria, Costa Rica, Greenland and Namibia revealed that only 2% of retrieved sequences had no database representative on the species-level and represented 30-37 additional species-level OTUs. With the exception of an acidic soil from which mostly amoA amplicons of the Nitrosotalea cluster were retrieved, all soils were dominated by amoA amplicons from the Nitrososphaera cluster (also called group I.1b), indicating that the previously reported AOA from the Nitrosopumilus cluster (also called group I.1a) are absent or represent minor populations in soils. AOA richness estimates on the species level ranged from 8-83 co-existing AOAs per soil. Presence/absence of amoA OTUs (97% identity level) correlated with geographic location, indicating that besides contemporary environmental conditions also dispersal limitation across different continents and/or historical environmental conditions might influence AOA biogeography in soils.  相似文献   

11.
Ammonia oxidation is performed by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). To explore the effect of ammonia concentration on the population dynamic changes of ammonia-oxidizing microorganisms, we examined changes in the abundance and community composition of AOA and AOB in different layers. Most of the archaeal amoA sequences were Nitrosotalea-related and the proportion that Nitrosotalea cluster occupied decreased in the surface layer and increased in the deep layer during the cultivation process. Nitrosopumilus-related sequences were only detected in the deep layer in the first stage and disappeared later. Both phylogenetic and quantitative analysis showed that there were increased Nitrosomonas-related sequences appeared in the surface layer where the ammonia concentration was the highest. Both AOA and AOB OTU numbers in different layers decreased under selective pressure and then recovered. The potential nitrification rates were 25.06 μg·N·L(-1)·g(-1) dry soil·h(-1) in the mid layer which was higher than the other two layers. In general, obvious population dynamic changes were found for both AOA and AOB under the selective pressure of exogenous ammonia and the changes were different in three layers of the soil column.  相似文献   

12.
Submarine groundwater discharge to coastal waters can be a significant source of both contaminants and biologically limiting nutrients. Nitrogen cycling across steep gradients in salinity, oxygen and dissolved inorganic nitrogen in sandy 'subterranean estuaries' controls both the amount and form of nitrogen discharged to the coastal ocean. We determined the effect of these gradients on betaproteobacterial ammonia-oxidizing bacteria (β-AOB) and ammonia-oxidizing archaea (AOA) in a subterranean estuary using the functional gene encoding ammonia monooxygenase subunit A ( amoA ). The abundance of β-AOB was dramatically lower in the freshwater stations compared with saline stations, while AOA abundance remained nearly constant across the study site. This differing response to salinity altered the ratio of β-AOB to AOA such that bacterial amoA was 30 times more abundant than crenarchaeal amoA at the oxic marine station, but nearly 10 times less abundant at the low-oxygen fresh and brackish stations. As the location of the brackish mixing zone within the aquifer shifted from landward in winter to oceanward in summer, the location of the transition from a β-AOB-dominated to an AOA-dominated community also shifted, demonstrating the intimate link between microbial communities and coastal hydrology. Analysis of ammonia-oxidizing enrichment cultures at a range of salinities revealed that AOA persisted solely in the freshwater enrichments where they actively express amoA . Diversity (as measured by total richness) of crenarchaeal amoA was high at all stations and time points, in sharp contrast to betaproteobacterial amoA for which only two sequence types were found. These results offer new insights into the ecology of AOA and β-AOB by elucidating conditions that may favour the numerical dominance of β-AOB over AOA in coastal sediments.  相似文献   

13.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

14.
Ongoing climate change, characterized by winter warming, snow cover decline and extreme weather events, is changing terrestrial ecosystem processes in high altitude and latitude regions. Winter soil processes could be particularly sensitive to climate change. In fact, winter warming and snow cover decline are interdependent in cold biomes, and have a synergistic effect on soil processes. Soil microorganisms not only play crucial roles in material cycling and energy flow, but also act as sensitive bio-indicators of climate change. However, little information is available on the effect of winter warming on forest soil ammonia-oxidizing bacteria (AOB) and archaea (AOA). The alpine and subalpine forest ecosystems on the eastern Tibet Plateau have important roles in conserving soil, holding water, and maintaining biodiversity. To understand the changes in AOB and AOA communities under climate change scenarios, an altitudinal gradient experiment in combination with soil column transplanting was conducted at the Long-term Research Station of Alpine Forest Ecosystems, which is situated in the Bipeng Valley of Lixian County, Sichuan, China. Thirty intact soil columns under an alpine forest at an altitude of 3582 m were transplanted and incubated at 3298 m and 3023 m forest sites, respectively. Compared with the 3582 m, we expected air temperature increases of 2 °C and 4 °C at the 3298 m and 3023 m, respectively. However, the temperatures in the soil organic layer (OL) and mineral soil layer (ML) increased by 0.27 °C and 0.13 °C, respectively, at 3023 m and ? 0.36 °C and ? 0.35 °C at 3298 m. Based on a previous study and with simultaneous monitoring of soil temperature, the abundances of AOB and AOA communities in both the OL and ML were measured by qPCR in December 2010 (i.e., the onset of the frozen soil period) and March 2011 (i.e., the late frozen soil period). The soil columns incubated at 3023 m had relatively higher AOB abundances and lower AOA/AOB ratios than those at 3298 m, while higher AOA abundances and AOA/AOB ratios were observed at 3298 m. The abundance of the microbial community at the late frozen period was higher than that at the onset of frozen soil, and the changes in microbial community abundance at the late frozen period were more substantial. Furthermore, the nitrate nitrogen (N) concentrations in both the OL and ML were significantly higher than ammonia N concentrations, implying that soil nitrate N is the primary component of the inorganic N pool in the alpine forest ecosystem. Additionally, the responses of AOA and AOB in the soil OL to soil column transplanting were more sensitive than the responses of those in ML. In conclusion, climate warming alters the abundance of the ammonia-oxidizing microbial community in the alpine forest ecosystem, which, in turn, might affect N cycling.  相似文献   

15.
西藏米拉山土壤古菌16S rRNA及amoA基因多样性?分析   总被引:2,自引:0,他引:2  
摘要:【目的】硝化作用在全球土壤氮循环中具有重要的作用,虽然细菌一度被认为单独负责催化这个过程的限速步骤,但是最近一些研究结果表明泉古菌具有氨氧化的能力。本文通过构建古菌16S rRNA 基因克隆文库和氨氧化古菌amoA基因文库,分析西藏米拉山高寒草甸土壤中古菌及氨氧化古菌群落结构组成情况,为揭示青藏高原高寒草甸土壤古菌的多样性提供理论基础。【方法】采用未培养技术直接从土壤中提取微生物总DNA,分别利用通用引物构建古菌16S rRNA 基因和氨氧化古菌amoA基因克隆文库。【结果】通过构建系统发育树,表明古菌16S rRNA 基因克隆文库包括泉古菌门和未分类的古菌两大类,并且所有泉古菌均属于热变形菌纲。氨氧化古菌amoA基因克隆文库中序列均为泉古菌。通过DOTUR软件分析,古菌16S rRNA基因和古菌amoA基因克隆文库分别包括64个OTUs和 75个OTUs。【结论】西藏米拉山高寒草甸土壤中古菌多样性比较丰富,表明古菌在高寒草甸土壤的氮循环中可能具有重要的作用。所获得的一些序列与已知环境中土壤、淡水及海洋沉积物中获得的一些序列具有很高的相似性,其古菌及氨氧化古菌来自不同环境的可能性比较大,可能与青藏高原的地质历史变迁过程有关。米拉山古菌及氨氧化古菌与陆地设施土壤中相似性最高,说明与西藏米拉山高寒草甸土壤的退化有关。  相似文献   

16.
Considering their abundance and broad distribution, non-extremophilic Crenarchaeota are likely to play important roles in global organic and inorganic matter cycles. The diversity and abundance of archaeal 16S rRNA and putative ammonia monooxygenase alpha-subunit (amoA) genes were comparatively analyzed to study genetic potential for nitrification of ammonia-oxidizing archaea (AOA) in the surface layers (0-1 cm) of four marine sediments of the East Sea, Korea. After analysis of a 16S rRNA gene clone library, we found various archaeal groups that include the crenarchaeotal group (CG) I.1a (54.8%) and CG I.1b (5.8%), both of which are known to harbor ammonia oxidizers. Notably, the 16S rRNA gene of CG I.1b has only previously been observed in terrestrial environments. The 16S rRNA gene sequence data revealed a distinct difference in archaeal community among sites of marine sediments. Most of the obtained amoA sequences were not closely related to those of the clones retrieved from estuarine sediments and marine water columns. Furthermore, clades of unique amoA sequences were likely to cluster according to sampling sites. Using real-time PCR, quantitative analysis of amoA copy numbers showed that the copy numbers of archaeal amoA ranged from 1.1 x 10(7) to 4.9 x 10(7) per gram of sediment and were more numerous than those of bacterial amoA, with ratios ranging from 11 to 28. In conclusion, diverse CG I.1a and CG I.1b AOA inhabit surface layers of marine sediments and AOA, and especially, CG I.1a are more numerous than other ammonia-oxidizing bacteria.  相似文献   

17.
刘远  朱继荣  吴雨晨  束良佐 《生态学杂志》2017,28(10):3417-3423
生物质炭作为一种新型土壤改良剂,施入土壤不仅能提高肥力,改善土壤结构,还能够影响土壤氮素的转化.本文利用培养试验研究施用生物质炭对采煤塌陷区土壤性质及氨氧化菌丰度和群落结构的影响.结果表明: 生物质炭显著提高土壤铵氮(NH4+-N)、全氮、有效磷和速效钾含量.生物质炭施用量对氨氧化古菌(AOA)丰度没有显著影响,但是增加施用量显著提高了氨氧化细菌(AOB)丰度.对T-RFLP数据进行分析发现,生物质炭提高了AOA和AOB多样性,并在一定程度上改变了AOA和AOB群落结构.施用生物质炭提高了采煤塌陷区土壤养分含量,并在一定程度上提高了氨氧化菌的丰度和多样性,表明生物质炭对塌陷区复垦土壤具有培肥改良的潜能.  相似文献   

18.
The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal assemblage was dominated by phylotypes closely related to the crenarchaeal 1.1a group (58% ± 18% of total 16S rRNA gene sequences), and consistent structural changes were detected during the study. Water temperature was the environmental variable that better explained spring, summer, and winter (ice-covered lakes) archaeal assemblage structure. The amoA gene was detected year round, and seasonal changes in amoA gene composition were well correlated with changes in the archaeal 16S rRNA gene pool. In addition, copy numbers of both the specific 1.1a group 16 rRNA and archaeal amoA genes were well correlated, suggesting that most freshwater 1.1a Crenarchaeota had the potential to carry out ammonia oxidation. Seasonal changes in the diversity and abundance of AOA (i.e., amoA) were better explained by temporal changes in ammonium, the substrate for nitrification, and mostly nitrite, the product of ammonia oxidation. Lacustrine amoA gene sequences grouped in coherent freshwater phylogenetic clusters, suggesting that freshwater habitats harbor typical amoA-containing ecotypes, which is different from soils and seas. We observed within the freshwater amoA gene sequence pool a high genetic divergence (translating to up to 32% amino acid divergence) between the spring and the remaining AOA assemblages. This suggests that different AOA ecotypes are adapted to different temporal ecological niches in these lakes.  相似文献   

19.
【目的】本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性。【方法】以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs)。【结果】通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira)。AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote)。AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数目占克隆文库的57.45%。AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%。AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA。【结论】虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用。  相似文献   

20.
研究通过高通量测序和荧光定量PCR等分子生物学分析方法, 以氨单加氧酶基因(amoA)为分子标记, 研究了东湖表层沉积物中AOA和AOB的群落多样性、丰度及其与环境因子的关系。结果表明, 东湖沉积物AOA主要为Nitrosopumilus, 其群落结构与沉积物中总氮含量显著相关, 而AOB主要为Nitrosomonas, 群落结构与沉积物中总有机碳和总磷显著相关。此外, 不同季节AOA丰度均高于AOB, 且沉积物AOA数量与温度呈显著负相关, 但AOB丰度变化不明显。东湖沉积物中AOA可能主导了氨氧化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号