首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了降低界面热阻对微通道散热性能的制约,提出了一种组件壳体内置微通道散热单元的设计架构,以满足新一代高功率芯片T/R组件的热控需求.对内置微通道的传热特性进行数值仿真分析,优选出最佳结构参数组合.基于优选设计参数,整合UV-LIGA微细加工技术、精密扩散焊接技术及微组装技术,完成内置微通道散热单元T/R组件的模拟样件研...  相似文献   

2.
This study assessed the performance of a ceramic monolith heat exchanger, estimating heat transfer and pressure drop by numerical computation and the ε-NTU method. A heat exchanger consists of rectangular ducts for exhaust gas, a ceramic core, and rectangular ducts for air and exhaust gases, as well as air in the cross-flow direction. The numerical computations were performed for the whole domain, including the exhaust gas, ceramic core, and air. In addition, the heat exchanger was examined using a conventional ε-NTU method with several Nusselt number correlations from the literature to characterize the flow in the rectangular duct. The results of these numerical computation analyses demonstrated that the effectiveness of the heat exchanger, as demonstrated using the ε-NTU method with Stephan’s Nusselt number correlation, came closest to the results of computation with a relative error of 2%. The air-side pressure drops indicated by the results of numerical computation were 13–22% higher than those calculated using the head loss equation with the inclusion of a friction factor that was obtained from previous experiments examining heat transfer conditions.  相似文献   

3.
The thermal flying height control (TFC), aka dynamic fly height (DFH), technique has been recently used in the head disk interface of hard disk drives to obtain a lower head-media spacing. The air bearing cooling effect, i.e., the heat conduction between the slider and the air film, has been incorporated in the numerical thermal–mechanical simulation of the slider’s static performance. However, the heating effect of the viscous dissipation of the air flow has not been considered yet. In this article, both effects are included in the simulation of a flying slider with its flying height controlled by thermal protrusion, and different models for the air bearing cooling are used to obtain the slider’s static flying attitudes. The simulation results directly show that the air bearing cooling is dominant compared with the viscous heating. All of the air bearing cooling models, including a recent one that considers the dependence of the air molecular mean free path on the air temperature, have simulation results close to each other. The largest relative difference in the simulated flying height is less than 9% even when the transducer flying height is lowered to below 2 nm.  相似文献   

4.
在剪切力和压缩力共同作用下,液体静压轴承黏性油膜的液阻和流速会发生变化,导致油膜的散热能力不稳定,而增加油膜流动阻力,减小流动速度可以有效提高油膜的散热能力。为增加流体的扰动进而增强换热,在静压轴承工作面上加工不同的微结构(矩形、三角形、椭圆形),通过数值仿真方法研究微结构在不同跨度、不同深度、不同间距下对轴承工作面油膜流动速度的影响,得到黏性油膜增阻减速的有效范围。结果表明:综合微结构深度、跨度、间距变化对油膜液阻的影响,矩形微结构增阻效果最明显,椭圆形微结构次之,三角形微结构最差;当微结构间距单一变化时,只有矩形微结构可起到降低流场平均速度的作用。因此,矩形微结构可起到增阻减速的作用,且增阻减速的最佳间距范围为0.01~0.04 mm。  相似文献   

5.
箔片气体轴承微间隙内的流场常处于滑移区,甚至过渡区,会出现一些微观效应,其热特性的研究采用宏观方法已不再合适。为研究不同工况下动压气体轴承间隙热特性变化规律,基于格子Boltzmann方法建立包含黏性热耗散项的径向轴承间隙传热数值模型;采用总能形式的双分布函数热模型,通过有限差分离散将其应用到贴体网格中,同时引入速度滑移和温度阶跃边界条件,通过数值计算得到不同参数下的轴承间隙气膜温度分布,并分析了不同埃克特数(Ec)、偏心率和转速条件以及温度阶跃对黏性热耗散的影响。结果表明,当Ec数、偏心率和转速增大时,气膜最高温度增加,两侧的温度阶跃增加;温度阶跃效应的忽略均会导致黏性热耗散量不同程度的低估。  相似文献   

6.
This paper reports the effects of nozzle exit boundary layer swirl on the instability modes of underexpanded supersonic jets emerging from plane rectangular nozzles. The effects of boundary layer swirl at the nozzle exit on thrust and mixing of supersonic rectangular jets are also considered. The previous study was performed with a 30° boundary layer swirl (S=0.41) in a plane rectangular nozzle exit. At this study, a 45° boundary layer swirl (S=1.0) is applied in a plane rectangular nozzle exit. A three-dimensional unsteady compressible Reynolds-Averaged Navier-Stokes code with Baldwin-Lomax and Chien’sk-ε two-equation turbulence models was used for numerical simulation. A shock adaptive grid system was applied to enhance shock resolution. The nozzle aspect ratio used in this study was 5.0, and the fully-expanded jet Mach number was 1.526. The “flapping” and “pumping” oscillations were observed in the jet’s small dimension at frequencies of about 3,900Hz and 7,800Hz, respectively. In the jefs large dimension, “spanwise” oscillations at the same frequency as the small dimension’s “flapping“ oscillations were captured. As reported before with a 30° nozzle exit boundary layer swirl, the induction of 45° swirl to the nozzle exit boundary layer also strongly enhances jet mixing with the reduction of thrust by 10%.  相似文献   

7.
An analysis on nonlinear dynamic characteristics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in the time dependent thermal environment. Here we look the FGM Plates as isotropic materials which is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The geometrical nonlinearity using Von Karman’s assumption is introduced. The formulation also includes in-plane and rotary inertia effects. In the framework of Reddy’s third-order shear deformation plate theory, the governing equations of motion for the FGM plate are derived by the Hamilton’s principle. Then the equations of motion with two-degree-of-freedom under combined the time-dependent thermomechanical loads can be obtained by using Galerkin’s method. Using numerical method, the control equations are analyzed to obtain the response curves. Under certain conditions the periodic and chaotic motions of the FGM plate are found. It is found that because of the existence of the temperature which relate to the time the motions of the FGM plate show the great difference. A period motion can be changed into the chaotic motions which are affected by the time dependent temperature.  相似文献   

8.
An incompressible newtonian fluid is forced through the porous bottom of a circular slider which is moving laterally on a horizontal plane. The effects of mass injection and lateral velocity on the heat generated by viscous dissipation are investigated by solving the governing boundary layer equations using numerical integration techniques. Numerical results are presented for the velocity and temperature distributions as well as for the wall derivatives of the velocity and thermal functions. The range of Prandtl numbers investigated varies from 0.7 to 10 while the cross-flow Reynolds numbers and translational Reynolds numbers range from 0.01 to 50 and 1 to 1000 respectively.  相似文献   

9.
A numerical model was developed to investigate the flutter instability of truncated conical shells subjected to supersonic flows. The exact solution of Sanders’ best firstorder approximation was used to develop the finite elements model of the shell. Nonlinear kinematics of Donnell’s, Sanders’ and Nemeth’s theories, in conjunction with the generalized coordinates method, were used to formulate the nonlinear strain energy of the shell. A pressure field was formulated using the piston theory with the correction term for the curvature. Lagrangian equations of motion based on Hamilton’s principle were obtained. A variation of the harmonic balance method was used for developing the amplitude equations of the shell, and a numerical method was used for solving these equations. Results of linear and nonlinear flutter of truncated conical shells were validated against the existing data in the literature. It was observed that geometrical nonlinearities have a softening effect on the stability of the shell in supersonic flows.  相似文献   

10.
微通道内流体流动及换热特性的数值分析   总被引:1,自引:0,他引:1  
张力  闫云飞  高振宇 《中国机械工程》2007,18(16):1896-1900
采用Navier—Stokes方程与滑移边界条件联立的理论分析模型,对等壁温、等热流及无温度梯度工况下,气体在微通道中的流速分布、阻力系数变化趋势(Cf·Re)和传热特性(努塞尔数)进行了数值研究。结果表明:气体稀薄效应可显著减小管内的摩擦阻力和努塞尔数,增大气体流速;壁面的速度滑移和温度跳跃对微圆管内换热特性的影响相反,温度跳跃的影响更大;等热流加热与等壁温加热两种情况下,努塞尔数随克努森数的变化趋势明显不同。  相似文献   

11.
A new effectiveness-NTU method is developed for a special type of heat exchangers. in which the fluid of a passage is in simultaneous thermal contact with two separate fluids flowing in the opposite direction. An extensive amount of numerical simulations are carried out by an iterative method for wide ranges of dimensionless parameters such as ratios of capacity rates, NTU’s, or a dimensionless inlet temperature. The large body of resulting data are then effectively reduced to a small number of simple equations and graphs by introducing a new effectiveness, ε. ε is defined as the ratio of actual heat transfer to the maximum heat transfer obtained when the NTU’s become very large while the ratio of two NTU’s is kept constant. The developed method is readily applicable to the cycle analysis and design, in the same way as the ε-NTU method for the usual double-passage heat exchangers.  相似文献   

12.
Cross sectional shape and centerline waviness along the length of a micro-channel can affect different characteristics of microfluidic flow, including heat transfer, pressure distribution and dissipation, and separation of flow. Current existing technologies that allow such micro-machining have many limitations. The accompanying paper presented inverse techniques that can be used to predict the required non-uniform velocity to gradient etch, using abrasive jet micro-machining (AJM), micro-channels and pockets with a wide variety of prescribed textures and cross-sectional shapes. Methods to predict the final three-dimensional (3D) profiles of such features were also presented. In this paper, the velocity functions predicted using the inverse methods were used to machine micro-channels with prescribed centerline depths that varied linearly, parabolically and sinusoidally, pockets with prescribed textures in two directions, and micro-channels with prescribed W-shaped cross sections. Two different erosive efficacy sources were used, one resulting from an adjustable shadow mask and one using a maskless technique. The inverse and 3D shape prediction techniques were verified by comparing the measured feature topographies with those that were initially prescribed. The effect of process parameters such as source shape and the machined feature size on the accuracy of machined features and predictions of the models were also discussed. Overall, the inverse techniques were found to be very effective for predicting the process parameters required to machine a wide variety of desired micro-channel and pocket topographies.  相似文献   

13.
The air-side forced convective heat transfer of a plate fin-tube heat exchanger is investigated by experimental measurement and numerical computation. The heat exchanger consists of a staggered arrangement of refrigerant pipes with a diameter of 10.2 mm and a fin pitch of 3.5 mm. In the experimental study, the forced convective heat transfer was measured at Reynolds numbers of 1082, 1397, 1486, 1591 and 1649 based on the diameter of the refrigerant piping and on the maximum velocity. The average Nusselt number for the convective heat transfer coefficient was also computed for the same Reynolds number by using the commercial software STAR-CD with the standard k - ɛ turbulent model. It was found that the relative errors of the average Nusselt numbers between the experimental and numerical data were less than 6 percent in a Reynolds number range of 1082∼1649. The errors between the experiment and other correlations from literature ranged from 7% to 32.4%. However, the literature correlation of Kim et al. is closest to the experimental data within a relative error of 7%. This paper was recommended for publication in revised form by Associate Editor Man-Yeong Ha Jin-Gi Paeng recieved a bachelor’s degree in Aero Mechanical Engineering from Gyeong-sang National University in 2000. He then went on to recieve his M.S. degrees from Changwon National University in 2004. Currently, he completed the doc-tor’s course and a doctoral dissertation in 2007 and 2008, respectively. He will take a doctorate in 2008.  相似文献   

14.
This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model’s ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions.  相似文献   

15.
A fractional four-step finite element method for analyzing conjugate heat transfer between solid and unsteady viscous flow is presented. The second-order semi-implicit Crank-Nicolson scheme is used for time integration and the resulting nonlinear equations are linearized without losing the overall time accuracy. The streamline upwind Petrov-Galerkin method (SUPG) is applied for the weighted formulation of the Navier-Stokes equations. The method uses a three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the method presented is to consistently couple heat transfer along the fluid-solid interface. Five test cases, which are the lid-driven cavity flow, natural convection in a square cavity, transient flow over a heated circular cylinder, forced convection cooling across rectangular blocks, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the method presented. This paper was recommended for publication in revised form by Associate Editor Kyung-Soo Yang Atipong Malatip received his B.S. degree in Mechanical Engineering from King Mongkut’s University of Technology North Bangkok, Thailand, in 2002. He then received his M.S. degree in Mechanical Engineering Chulalongkorn University, Thailand, in 2005. He is currently pursuing a Ph.D. degree in Mechanical Engineering at Chulalongkorn University. His research interests include computational fluid dynamics and fluid-thermal-structural interaction. Niphon Wansophark received his B.S., M.S., and Ph.D. degrees in Mechanical Engineering from Chulalongkorn University, Thailand in 1996, 2000, and 2007, respectively. He is an Assistant Professor of Mechanical Engineering at Chulalongkorn University, Bangkok, Thailand. His research interests are numerical methods and finite element method. Pramote Dechaumphai received his B.S. degree in Industrial Engineering from Khon-Kaen University, Thailand, in 1974, M.S. degree in Mechanical Engineering from Youngstown State University, USA in 1977, and Ph.D. in Mechanical Engineering from Old Dominion University, USA in 1982. He is currently a Professor of Mechanical Engineering at Chula-longkorn University, Bangkok, Thailand. His research interests are numerical methods, finite element method for thermal stress and computational fluid dynamics analysis.  相似文献   

16.
The natural convective heat transfer in a rectangular enclosure with a heating source has been studied by experiment and numerical analysis. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The parameters for the numerical study are positions and surface temperatures of a heating source i.e., Y/H=0.25, 0.5, 0.75 and 11°C≦ΔT≦59°C. The results of isotherms and velocity vectors have been represented, and the numerical results showed a good agreement with experimental values. Based on the numerical results, the mean Nusselt number of the rectangular enclosure wall could be expressed as a function of Grashof number.  相似文献   

17.
Four different microchannel heat sinks are designed to study the effects of structures in microchannel heat sinks for electronic chips cooling. Based on the theoretic analysis and numerical computation of flow and heat exchange characteristics, the electronic chip’s temperature and flow rate distributions are obtained. The correspondence between flow pressure drop and chip’s temperature in the four microchannel heat sinks is also studied and analyzed. Numerically analyzed results indicate that the topological structure in microchannel heat sink has a significant influence on electronic chips cooling. This study shows various thermal properties in the four microchannel heat sinks.  相似文献   

18.
Viscous dissipation influencing viscosity of polymer melt in micro channels   总被引:1,自引:0,他引:1  
Determination of melt rheological behavior within micro-structured geometry is very important for the accurate simulation modeling of micro-molding. Yet studies on the rheological behavior of polymer melts, flowing through micro channels, are complicated due to a large number of factors affecting the melt viscosity. One factor, viscous dissipation, is investigated in the current work through a novel experimental technique to determine the viscous dissipation of a polymer melt flowing through several micro channels with identical aspect ratio. Relative tests are conducted with the melt of high density polyethylene (HDPE) at different temperatures being extruded through the capillary dies with diameters 1000μm, 500μm and 350μm, respectively. It was found that the temperature rise due to viscous dissipation decreases significantly with the reduction of the characteristic size of micro channel at the same shear rate. In addition, based on the suggested model of radial temperature distribution, the influence of viscous heating on the melt viscosity is investigated. The results indicate that viscous dissipation does not play a significant role.  相似文献   

19.
This paper represents a numerical study of the flow field due to the interactions between a pair of vortices produced by vortex generators in a rectangular channel flow. In order to analyze longitudinal vortices induced by the vortex generators, the pseudo-compressibility method is introduced into the Reynolds-averaged Navier-Strokes equations of a 3-dimensional unsteady, incompressible viscous flow. A two-layer κ-ε turbulence model is applied to a flat plate 3-dimensional turbulence boundary to predict the flow structure and turbulence characteristics of the vortices. The computational results predict accurately the vortex characteristics related to the flow field, the Reynolds shear stresses and turbulent kinetic energy. Also, in the prediction of skin friction characteristics the computational results are reasonably close to those of the experiment obtained from other researchers.  相似文献   

20.
Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier’s method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss’s principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号