首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HydroTrend v.3.0 is a climate-driven hydrological water balance and transport model that simulates water discharge and sediment load at a river outlet, by incorporating drainage basin properties (river networks, hypsometry, relief, reservoirs) together with biophysical parameters (temperature, precipitation, evapo-transpiration, and glacier characteristics). HydroTrend generates daily discharge values through: snow accumulation and melt, glacier growth and ablation, surface runoff, and groundwater evaporation, retention and recharge. The long-term sediment load is predicted either by the ART-QRT module based on drainage area, discharge, relief, and temperature, or the BQART module that also incorporates basin-average lithology and anthropogenic influences on soil erosion. Sediment trapping efficiency of reservoirs is based on reservoir location in the river network and its volume that determines the residence time of water within the reservoir. Glacial influence is based on the extent of ice cover, equilibrium altitude, and freezing line mobility. HydroTrend v.3.0 captures the inter- and intra-annual variability of sediment flux by using either high-resolution climate observations or a stochastic climate generator for simulations over longer geological intervals. A distributary channel module simulates the flow conditions and transport capacity across a multiple deltaic channel system. Simulations of the Metauro and the Po rivers, in Italy, are used as case studies to demonstrate the applicability of the new model.  相似文献   

2.
Surface–groundwater (SW–GW) interactions constitute a critical proportion of the surface and groundwater balance especially during dry conditions. Conjunctive management of surface and groundwater requires an explicit account of the exchange flux between surface and groundwater when modelling the two systems. This paper presents a case study in the predominantly gaining Boggabri–Narrabri reach of the Namoi River located in eastern Australia. The first component of the study uses the Upper Namoi numerical groundwater model to demonstrate the importance of incorporating SW–GW interactions into river management models. The second component demonstrates the advantages of incorporating groundwater processes in the Namoi River model.Results of the numerical groundwater modelling component highlighted the contrasting groundwater dynamics close to, and away from the Namoi River where lower declines were noted in a near-field well due to water replenishment sourced from river depletion. The contribution of pumping activities to river depletion was highlighted in the results of the uncertainty analysis, which showed that the SW–GW exchange flux is the most sensitive to pumping rate during dry conditions. The uncertainty analysis also showed that after a drought period, the 95% prediction interval becomes larger than the simulated flux, which implies an increasing probability of losing river conditions. The future prospect of a gaining Boggabri–Narrabri reach turning into losing was confirmed with a hypothetical extended drought scenario during which persistent expansion of groundwater pumping was assumed. The river modelling component showed that accounting for SW–GW interactions improved the predictions of low flows, and resulted in a more realistic calibration of the Namoi River model.Incorporating SW–GW interactions into river models allows explicit representation of groundwater processes that provides a mechanism to account for the impacts of additional aquifer stresses that may be introduced beyond the calibration period of the river model. Conventional river models that neglect the effects of such future stresses suffer from the phenomenon of non-stationarity and hence have inferior low flow predictions past the calibration period of the river model. The collective knowledge acquired from the two modelling exercises conducted in this study leads to a better understanding of SW–GW interactions in the Namoi River thus leading to improved water management especially during low flow conditions.  相似文献   

3.
This study develops a modified version of the Soil and Water Assessment Tool (SWAT) designed to better represent riparian depressional wetlands (SWATrw). It replaces existing unidirectional hydrological interactions between a wetland and a river/aquifer with a more robust bidirectional approach based on hydraulic principles. SWATrw incorporates a more flexible wetland morphometric formula and a connecting channel concept to model wetland-river interactions. SWAT and SWATrw were tested for the Barak-Kushiyara River Basin (Bangladesh and India). Although the two models showed small differences in simulated stream flow, SWATrw outperformed SWAT in reproducing river stages and the pre-monsoon river-spills into riparian wetlands. SWATrw showed that the observed presence of dry season water in the wetland was due to reduced seepage to the local groundwater table whilst continuous seepage simulated by SWAT resulted in the wetland drying out completely. The new model therefore more closely simulates the hydrological interactions between wetlands, rivers and groundwater.  相似文献   

4.
To support operational water management of freshwater resources in coastal lowlands, a need exists for a rapid, well-identifiable model to simulate salinity dynamics of exfiltrating groundwater. This paper presents the lumped Rapid Saline Groundwater Exfiltration Model (RSGEM). RSGEM simulates groundwater exfiltration salinity dynamics as governed by the interplay between water velocity, gradually adjusting the subsurface salinity distribution, and pressure wave celerity, resulting in a fast flow path response to groundwater level changes. RSGEM was applied to a field site in the coastal region of the Netherlands, parameter estimation and uncertainty analysis were performed using generalized likelihood uncertainty estimation. The model showed good correspondence to measured groundwater levels, exfiltration rates and salinity response. Moreover, RSGEM results were very similar to a detailed, complex groundwater flow and transport model previously applied to this field site.  相似文献   

5.
《Applied Soft Computing》2007,7(1):265-285
An accurate simulation model is a necessary tool for optimizing allocation of scarce water resources in large-scale river basins. Adaptive Neural Fuzzy Inference System (ANFIS) method is used to simulate seven interconnected sub-basins in a regional river system located in Iran. Simulated predictions of the method are compared with historical data measurements. ANFIS is a powerful tool for simulating water resources systems of all sub-basins. In this study, a new methodology, Adaptive Neural Fuzzy Reinforcement Learning (ANFRL) is presented for obtaining optimal values of the decision variables. By combining ANFIS with Fuzzy Reinforcement Learning within the content of historical data over a consecutive monthly management period, ANFRL method was derived. Based upon the results of this research, this methodology can be used to develop fuzzy rule systems that accurately simulate the behavior of complex river basin systems within the context of uncertainty. As previous researches have shown that, when simulation model accurately reproduces observed river basin behavior, the optimization model yields better results. Application of this approach in the present case study shows that the effects of uncertainty, imprecise and random factors are 21, 11 and 15% over water resources system, water demand estimated and hydrological regime, respectively. Finally, the results of this method showed that about 16% improvement in water allocation was attained when compared to the primary water resources management in this case study.  相似文献   

6.
Management of regulated water systems has become increasingly complex due to rapid socio-economic growth and environmental changes in river basins over recent decades. This paper introduces the Source Integrated Modelling System (IMS), and describes the individual modelling components and how they are integrated within it. It also describes the methods employed for tracking and assessment of uncertainties, as well as presenting outcomes of two case study applications.Traditionally, the mathematical tools for water resources planning and management were generally designed for sectoral applications with, for example, groundwater being modelled separately from surface water. With the increasing complexity of water resources management in the 21st century those tools are becoming outmoded. Water management organisations are increasingly looking for new generation tools that allow integration across domains to assist their decision making processes for short-term operations and long-term planning; not only to meet current needs, but those of the future as well.In response to the need for an integrated tool in the water industry in Australia, the eWater Cooperative Research Centre (CRC) has developed a new generation software package called the Source IMS. The Source IMS is an integrated modelling environment containing algorithms and approaches that allow defensible predictions of water flow and constituents from catchment sources to river outlets at the sea. It is designed and developed to provide a transparent, robust and repeatable approach to underpin a wide range of water planning and management purposes. It can be used to develop water sharing plans and underpin daily river operations, as well as be used for assessments on water quantity and quality due to changes in: i) land-use and climate; ii) demands (irrigation, urban, ecological); iii) infrastructure, such as weirs and reservoirs; iv) management rules that might be associated with these; and v) the impacts of all of the above on various ecological indices. The Source IMS integrates the existing knowledge and modelling capabilities used by different state and federal water agencies across Australia and has additional functionality required for the river system models that will underpin the next round of water sharing plans in the country. It is built in a flexible modelling environment to allow stakeholders to incorporate new scientific knowledge and modelling methods as they evolve, and is designed as a generic tool suitable for use across different jurisdictions. Due to its structure, the platform can be extended/customised for use in other countries and basins, particularly where there are boundary issues.  相似文献   

7.
Using a system dynamics approach, an integrated water resources system model is developed for scenario analysis of the Saskatchewan portion of the transboundary Saskatchewan River Basin in western Canada. The water resources component is constructed by emulating an existing Water Resources Management Model. Enhancements include an irrigation sub-model to estimate dynamic irrigation demand, including alternative potential evapotranspiration estimates, and an economic sub-model to estimate the value of water use for various sectors of the economy. Results reveal that the water resources system in Saskatchewan becomes increasingly sensitive to the selection of evapotranspiration algorithm as the irrigation area increases, due to competition between hydropower and agriculture. Preliminary results suggest that irrigation expansion would decrease hydropower production, but might increase the total direct economic benefits to Saskatchewan. However, indirect costs include reduction in lake levels and river flows.  相似文献   

8.
在气候干旱的宁蒙引黄灌区,控制地下水位是防治土壤盐碱化、保证农业健康发展的重要途径。采用相关分析的方法确定了影响灌区地下水位变化的主要因素,建立了基于LM算法的灌区神经网络地下水位预测模型,并以宁夏河东灌区为实例进行了研究。研究结果表明:模型能够较好地模拟灌区地下水系统的变化特征,对地下水位做出较准确的预测。  相似文献   

9.
Water budgeting of the D-36 and D-36 A distributaries confined between Pedda Vagu, Korutla Vagu and Kakatiya main canal of the Sri RamSagar Project (SRSP) Command area was conducted using remote sensing derived crop areas, land cover information, irrigation tank inventory and source-wise distribution of irrigated areas, together with conventional meteorological, canal flows and well inventory data. A semi-empirical water balance model was developed and validated using remote sensing derived objective information of the command area and the validated model used for predicting the groundwater table under normal rainfall conditions. Recharge and water balance in the study area indicated that the net recharge to the aquifer is negative to the tune of 2.54 Mm3 resulting in a fall of the groundwater table by 0.79 m during 1992-93. However, normalized groundwater recharge and water balance estimates indicate an impending waterlogging problem with an annual groundwater table rise of 0.35 m. In view of existing water management practices, a conjunctive water use plan of rotational operation of aquifers and canals is suggested.  相似文献   

10.
In models of coupled human and natural systems (CHANS), the role of individuals and human behavior is often overlooked as data are scarce and assumptions hard to verify. To assess this role, we couple an agent-based model simulating farmers' behavior and a groundwater model and apply the models to the case of groundwater-fed irrigation in a river basin in the High Plains Aquifer region. Results show the crucial role of human behavior in driving the interactions between these coupled systems. Conversely, individuals are impacted by the systems’ dynamics in different ways depending on physical, economic and social characteristics. The findings provide implications for local policy making and education and demonstrate that assumptions on human behavior could be treated as an additional source of uncertainty. This work suggests that modeling individuals and human behavior can be an important step to simulate and understand the dynamics of CHANS in a holistic way.  相似文献   

11.
The Variable Infiltration Capacity (VIC) hydrologic and river routing model simulates the water and energy fluxes that occur near the land surface and provides useful information regarding the quantity and timing of available water within a watershed system. However, despite its popularity, wider adoption is hampered by the considerable effort required to prepare model inputs and calibrate the model parameters. This study presents a user-friendly software package, named VIC-Automated Setup Toolkit (VIC-ASSIST), accessible through an intuitive MATLAB graphical user interface. VIC-ASSIST enables users to navigate the model building process through prompts and automation, with the intention to promote the use of the model for practical, educational, and research purposes. The automated processes include watershed delineation, climate and geographical input set-up, model parameter calibration, sensitivity analysis, and graphical output generation. We demonstrate the package's utilities in various case studies.  相似文献   

12.
为了更加真实且实时地模拟运动中虚拟人恢复平衡的反应动作,提出一种针对受到外界作用力扰动的虚拟人平衡保持算法.首先通过虚拟人质心位移和速度来判断平衡性;然后借助生物力学的研究成果设计了具有人体特性的虚拟人运动受扰后的平衡保持方法,并用动力学进行模拟,驱动虚拟人完成平衡恢复.实验结果表明:该算法计算效率高,符合人体的生物力学特性,并且具有良好的交互性与较好的视觉效果,适用于虚拟人动画合成.  相似文献   

13.
In semi-arid and arid areas with intensive agriculture, surface water-groundwater (SW-GW) interaction and agricultural water use are two critical and closely interrelated hydrological processes. However, the impact of agricultural water use on the hydrologic cycle has been rarely explored by integrated SW-GW modeling, especially in large basins. This study coupled the Storm Water Management Model (SWMM), which is able to simulate highly engineered flow systems, with the Coupled Ground-Water and Surface-Water Flow Model (GSFLOW). The new model was applied to study the hydrologic cycle of the Zhangye Basin, northwest China, a typical arid to semi-arid area with significant irrigation. After the successful calibration, the model produced a holistic view of the hydrological cycle impact by the agricultural water use, and generated insights into the spatial and temporal patterns of the SW-GW interaction in the study area. Different water resources management scenarios were also evaluated via the modeling. The results showed that if the irrigation demand continuous to increase, the current management strategy would lead to acceleration of the groundwater depletion, and therefore introduce ecological problems to this basin. Overall, this study demonstrated the applicability of the new model and its value to the water resources management in arid and semi-arid areas.  相似文献   

14.
The Large Aperture Scintillometer (LAS) has emerged as one of the best tools for quantifying areal averaged fluxes over heterogeneous land surfaces. This is particularly useful as a validation of surface energy fluxes derived from satellite sources. We examine how changes in surface source area contributing to the scintillometer and eddy covariance measurements relate to satellite derived estimates of sensible heat flux. Field data were collected on the Konza Prairie in Northeastern Kansas, included data from two eddy covariance towers: one located on an upland, relatively flat homogeneous area, and the second located in a lowland area with generally higher biomass and moisture conditions. The large aperture scintillometer spanned both the upland and lowland areas and operated with a path length of approximately 1 km specifically to compare to Moderate Resolution Imaging Spectroradiometer (MODIS) derived estimates of surface fluxes. The upland station compares well with the LAS (correlation of 0.96), with the lowland station being slightly worse (correlation of 0.84). Data from the MODIS sensor was used to compute surface fluxes using the ‘triangle’ method which combines the remotely sensed data with a soil-vegetation-atmosphere-transfer scheme and a fully developed atmospheric boundary layer model. The relative contribution to the surface observations is estimated using a simple footprint model. As wind direction varies, the relative contribution of upland and lowland sources contributing to the LAS measurements varies while the MODIS pixel contribution remains relatively constant. With the footprint model, we were able to evaluate the relationship between the LAS observations and the remotely sensed estimates of the surface energy balance. The MODIS derived sensible heat flux values correspond better to the LAS measurements (percentage error: 0.04) when there was a larger footprint compared to a time with a smaller footprint (percentage error:??0.13). Results indicate that the larger the footprint, the better the agreement between satellite and surface observations.  相似文献   

15.
Water and salt export to rivers is of particular importance in large catchments, such as Australia’s Murray-Darling Basin, where there are multiple users of the water resource. Comparing estimates of water and salt generated from upland catchments across large areas is difficult due to the lack of a comparable, consistent approach. River routing models are currently used to model water and salt movement along regulated reaches. However methods are still required to predict the individual contributions of water and salt from unregulated upland catchments to feed into these river routing models. The 2CSalt model has been developed to predict monthly water and salt export from these upland catchments. 2CSalt makes use of existing regional data sets such as topography (digital elevation models) and hydrogeology/salinity (Groundwater Flow Systems). 2CSalt was developed using the “TIME” modelling framework which allowed for a rapid development cycle through the reuse of existing and tested components. The results from current applications of the model show a strong match with measured data.  相似文献   

16.
The lack of natural fresh water resources has become one of the major concerns of the world today. Despite this fact, a considerable portion of the municipality water in urbanized areas is lost through leakage from the network, excess irrigation and other ways. Moreover, this lost water often causes the rise of the groundwater table which in turn creates major environmental and structural problems.

In this work, a method is presented to automatically control the level of the groundwater in urbanized areas and use the excess water for irrigation and other purposes. The proposed system contains a dewatering scheme, a transportation network, a recharge scheme and a control room. A mathematical model is constructed to regulate the process.

For the purpose of illustration, the system is applied on a hypothetical area which includes the major parameters that may appear in nature. The obtained results are presented in a graphical form which shows the groundwater levels before applying the system and the gradual improvement in their distribution as time goes on after its application.  相似文献   


17.
基于系统动力学的大学教员职称晋升预测模型   总被引:1,自引:0,他引:1  
为预测大学教员职称趋势走向问题,基于系统动力学的老化链与协流理论,构建影响教员职称晋升的各元素存量流量图,建立带有四阶延迟的大学教员职称晋升预测模型,并以系统动力学软件Vensim PLE 5.9为平台进行建模仿真。运行结果表明,该模型能进行大学教员职称晋升趋势的预测,可为大学教员职业规划方案的制定提供理论依据与技术基础。  相似文献   

18.
Scarce surface water resources have led farmers to use groundwater heavily for irrigation in the Murray-Darling Basin of Australia. Saline groundwater is emerging as an alternative source of water for irrigation. This study examines the potential use of saline groundwater for a range of crops. Among cropping groups modelled, oilseeds and grain crops are considerably tolerant to saline groundwater in terms of the change yield with salinity levels, although the tolerance levels are crop-specific. Based on availability of saline groundwater, coarse textured soil, deep water table and moderate rainfall, this study also revealed that twenty-two percent or seven million hectares of the Murray hydrogeological basin in the southern Murray-Darling Basin may be suitable for the saline groundwater irrigation. However, it is also noted that the use of saline groundwater is only feasible for saline-tolerant crops under proper drainage management and by observing suitable precautionary measures. Therefore, the use of saline groundwater in irrigation requires careful attention to monitor the build up of salt in the root zone.  相似文献   

19.
In this paper an approach for coupling real-time control and socio-economic issues in participatory river basin planning is presented through a case study. It relies on the use of Bayesian Networks (Bns) to describe in a probabilistic way the behaviour of farmers within an irrigation district in response to some planning actions. Bayesian Networks are coupled with classical stochastic hydrological models in a decision-making framework concerning the real-time control of a water reservoir network. The approach is embedded within the framework of the Participatory and Integrated Planning (PIP) procedure.  相似文献   

20.
Understanding the processes responsible for the distribution of water availability over space and time is of great importance to spatial planning in a semi-arid river basin. In this study the usefulness of a multi-agent simulation (MAS) approach for representing these processes is discussed. A MAS model has been developed to represent local water use of farmers that both respond to and modify the spatial and temporal distribution of water resources in a river basin. The MAS approach is tested for the Jaguaribe basin in semi-arid Northeast Brazil. Model validity and required data for representing system dynamics are discussed. For the Jaguaribe basin both positive and negative correlations between water availability and water use have been encountered. It was found that increasing wet season water use in times of drought amplify water stress in the following dry season. It is concluded that with our approach it is possible to validly represent spatial-temporal variability of water availability that is influenced by water use and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号