首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono-unsaturated (mostly cis-9 18:1) and decreased polyunsaturated, total trans-, and conjugated linoleic fatty acids concentrations in milk fat. In this study, compared with conventional, high-linoleic-acid variety extruded soybean meal, the Plenish soybean diets increased milk fat concentration and tended to increase fat yield, decreased feed efficiency, and modified milk fatty acid profile in a manner expected from the greater concentration of oleic acid in Plenish soybean oil.  相似文献   

2.
Ruminants have a unique metabolism and digestion of unsaturated fatty acids (UFA). Unlike monogastric animals, the fatty acid (FA) profile ingested by ruminants is not the same as that reaching the small intestine. The objective of this study was to evaluate whole raw soybeans (WS) in diets as a replacer for calcium salts of fatty acids (CSFA) in terms of UFA profile in the abomasal digesta of early- to mid-lactation cows. Eight Holstein cows (80 ± 20 d in milk, 22.9 ± 0.69 kg/d of milk yield, and 580 ± 20 kg of body weight; mean ± standard deviation) with ruminal and abomasal cannulas were used in a 4 × 4 Latin square experiment with 22-d periods. The experiment evaluated different fat sources rich in linoleic acid on ruminal kinetics, ruminal fermentation, FA abomasal flow, and milk FA profile of cows assigned to treatment sequences containing a control (CON), with no fat source; soybean oil, added at 2.68% of diet dry matter (DM); WS, addition of WS at 14.3% of diet DM; and CSFA, addition of CSFA at 2.68% of diet DM. Dietary fat supplementation had no effect on nutrient intake and digestibility, with the exception of ether extract. Cows fed fat sources tended to have lower milk fat concentration than those fed CON. In general, diets containing fat sources tended to decrease ruminal neutral detergent fiber digestibility in relation to CON. Cows fed WS had lower ruminal digestibility of DM and higher abomasal flow of DM in comparison to cows fed CSFA. As expected, diets containing fat supplements increased FA abomasal flow of C18:0 and total FA. Cows fed WS tended to present a higher concentration of UFA in milk when compared with those fed CSFA. This study suggests that under some circumstances, abomasal flow of UFA in early lactation cows can be increased by supplementing their diet with fat supplements rich in linoleic acid, regardless of rumen protection, with small effects on ruminal DM digestibility.  相似文献   

3.
Fatty acid profiles with emphasis on linoleic, linolenic, oleic, and conjugated linoleic acid (CLA) were compared in milk from dairy cows fed diets containing 3.25% supplemental fat and a control diet containing no supplemented fat. The fat was supplied by either whole ground solin, flax, or canola oilseed. Solin (linola) is a new cultivar of flax that contains 28% linoleic acid in the seed, Twelve multiparous Holstein cows were assigned to one of four dietary treatments. The experimental design was a 4 x 4 Latin square with each period consisting of 16 d for adjustment to the diet followed by a 5-d sampling period. Feed intake, milk yield, milk fat yield, and milk fat percentage were not affected by treatment. Adding solin, flax, or canola oilseed to lactation diets produced the highest proportions of linoleic (C18:2), linolenic (C18:3), and oleic (C18:1) acids, respectively, in the lipid fraction of the milk of the cows consuming these diets. The proportions of C6:0 to C16:1 were depressed in the milk fat of cows fed the oilseed diets, compared with the control diet. Increasing the lactation diet levels of C18:2, by using different oilseeds, increased CLA to 1.5% of milk fatty acids. The content of CLA in milk fatty acids, however, did not increase with the solin-supplemented diet compared with the canola-supplemented diet even though the C18:2 level was higher in the former diet.  相似文献   

4.
Twelve multiparous Holstein cows averaging 65 (33 to 122) DIM were used in a 4 x 4 Latin square for 4-wk periods to determine whether feeding fish oil as fish meal would stimulate increased amounts of milk conjugated linoleic acid (cis-9, trans-11 C18:2; CLA) and transvaccenic acid (trans-11 C18:1; TVA) when the cows were fed extruded soybeans to supply additional linoleic acid. Treatment diets were 1) control; 2) 0.5% fish oil from fish meal; 3) 2.5% soybean oil from extruded soybeans; and 4) 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans. Diets were formulated to contain 18% crude protein and were composed (dry basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Intake of DM was not affected by diet. Milk production was increased by diets 2, 3, and 4 compared with diet 1 (control). Milk fat and milk protein percentages decreased with diets 3 and 4. Milk fat yield was not affected by treatments, but yield of milk protein was increased with supplemental fish meal and extruded soybeans or their blend. When diets 2, 3, or 4 were fed, concentrations of cis-9, trans-11 CLA in milk fat increased by 0.4-, 1.4-, and 3.2-fold, and TVA concentrations in milk fat increased by 0.4-, 1.8-, and 3.5-fold compared with the control milk fat. Increases in TVA and cis-9, trans-11 CLA were 91 to 109% greater when a blend of fish meal and extruded soybeans was fed than the additive effect of fish meal and extruded soybeans. This suggested that fish oil increased the production of CLA and TVA from other dietary sources of linoleic acid such as extruded soybeans.  相似文献   

5.
Extruded oilseeds were fed to 24 dairy cows to study the influence on the conjugated linoleic acid content of milk and cheese. Cows were fed one of three diets that contained forage and grain in a ratio of 47:53. A control diet containing 13.5% soybean meal was compared with diets containing 12% full fat extruded soybeans or 12% full fat extruded cottonseed. The control, extruded soybean, and extruded cottonseed diets contained 2.73, 4.89, and 4.56% fatty acids, respectively. Measurements were made during the last 5 wk of the 8-wk experiment. The DM intakes and 3.5% fat-corrected milk yields were higher for cows fed the extruded soybean and extruded cottonseed diets than for cows fed the control diet. A tendency for lower fat and protein contents in the milk of cows fed the extruded soybean and extruded cottonseed diets was detected. Most of the C18 fatty acids were increased in the milk and cheese when extruded soybeans and cottonseeds were fed. The conjugated linoleic acid content in milk and cheese increased a mean of 109% when full fat extruded soybeans were fed and increased 77% when cottonseeds were fed compared with the conjugated linoleic acid content when the control diet was fed. Processing the milk into cheese did not alter the conjugated linoleic acid content. The conjugated linoleic acid content of milk and cheese can be increased by the inclusion of full fat extruded soybeans and full fat extruded cottonseeds in the diets of dairy cows.  相似文献   

6.
Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n = 48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.  相似文献   

7.
This study aimed to evaluate the effect of dietary integration of dried olive pomace (DOP), a by-product of olive oil separation, on nutritional and aromatic properties of milk and cheese. Twenty dairy cows were divided into 2 groups that were balanced for milk yield, parity, and days in milk. The control group was fed a conventional diet (20 kg of dry matter/head per day), whereas the experimental group (EG) received the conventional diet supplemented with DOP as 10% of dry matter. During the trial, milk yield was recorded and the samples of milk, cheese, total mixed rations, and DOP were collected and analyzed to determine the chemical–nutritional composition and aromatic profile. Atherogenic and thrombogenic indices were calculated on the basis of the fatty acid (FA) profile of milk and cheese. Data were analyzed according to the mixed model for milk yield and chemical composition, including cows nested within treatment as a random effect, whereas the general linear model was used for the analysis of cheese parameters. Differences were assessed by Tukey's test. The EG diet had a lower content of palmitic, stearic, and linoleic acids and a higher level of oleic acid compared with the control. Dietary DOP integration did not affect milk yield and composition with the exception of protein content, which was greater in EG and significantly affected by diet and period. Instead, period was found to be significant for fat and casein in both groups. Dietary supplementation with DOP modified the FA profile of milk and cheese. There was a decrease in short- and medium-chain FA, but significance was achieved only for palmitic acid. The stearic, isomer trans of oleic (in particular vaccenic acid), oleic, and isomer trans of linoleic acids significantly increased. Monounsaturated FA increased in EG milk and cheese and saturated FA were significantly lower, whereas no difference was marked between the groups regarding level of polyunsaturated FA. Supplementation with DOP reduced atherogenic and thrombogenic indices and increased conjugated linoleic acid in both milk and cheese. The free fatty acids, ketones, lactones, esters, and phenylalanine catabolites were increased in raw milk, whereas only leucine metabolism was affected by diet in pasteurized milk cheese at both 1 and 30 d of ripening. The present results pointed out that DOP supplementation may improve the nutritional and nutraceutical properties and modify the aroma of milk and derived cheese.  相似文献   

8.
Twenty cows were used in a randomized block design experiment for 6 wk to determine the influence of feeding partial ruminally inert Ca salts of palm and fish oil (Ca-PFO), alone or in combination with extruded full-fat soybeans or soybean oil, on milk fatty acid (FA) methyl esters composition and consumer acceptability of milk and Cheddar cheese. Cows were fed either a diet containing 44% forage and 56% concentrate (control) or a diet supplemented with 2.7% Ca-PFO (FO), 5% extruded full-fat soybeans + 2.7% Ca-PFO (FOESM), or 0.75% soybean oil + 2.7% Ca-PFO (FOSO). Total dietary FA content in the control, FO, FOESM, and FOSO diets were 4.61, 6.28, 6.77, and 6.62 g/100 g, respectively. There was no difference in nutrient intake, milk yield, or milk composition among treatments. Conjugated linoleic acid (CLA) C18:2cis-9, trans-11 isomer, C18:1trans-11 (VA), and total n-3 FA in milk from cows on the control, FO, FOESM, and FOSO treatments were 0.56, 1.20, 1.36, and 1.74; 3.29, 4.66, 6.34, and 7.81; 0.62, 0.69, 0.69, and 0.67 g/100 g of FA, respectively. Concentrations of CLA, VA, and total n-3 FA in cheese were similar to milk. A trained sensory panel detected no difference in flavors of milk and cheese, except for acid flavor below a slightly perceptible level in cheese from all treatments. Results suggest that feeding Ca-PFO alone or in combination with extruded full-fat soybeans or soybean oil enhanced the CLA, VA, total unsaturated and n-3 FA in milk and cheese without negatively affecting cow performance and consumer acceptability characteristics of milk and cheese.  相似文献   

9.
Nutrient composition and organoleptic properties of milk can be influenced by cow diets. The objective of this study was to evaluate the forage type effects on volatile organic compounds, fatty acid (FA) profile, and organoleptic properties of milk. Timothy grass was fed as hay, pasture, or silage during a period of 27 d to a group of 21 cows in a complete block design based on days in milk. Each cow also received 7.2 kg/d of a concentrate mix to meet their nutrient requirements. Forage dry matter intake averaged 13.9 kg/d and was not different among treatments. Milk yield was higher for cows fed pasture, intermediate for cows fed silage, and lowest for cows fed hay. However, milk fat content was higher for cows fed hay and silage, compared with cows fed pasture. As a result, fat-corrected milk and fat yield were not different among treatments. Increasing the supply of dietary cis-9,cis-12 18:2 (linoleic acid) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid) when feeding pasture enhanced the concentration of these 2 essential FA in milk fat compared with feeding hay or silage. Moreover, the ratio of 16:0 (palmitic acid) to cis-9 18:1 (oleic acid), which is closely related to the melting properties of milk fat, was lower in milk from cows on pasture than in milk from cows fed hay or silage. Cows fed hay produced milk with higher levels of several free FA and γ-lactones, but less pentanal and 1-pentanol. More dimethyl sulfone and toluene were found in milk of cows on pasture. Cows fed silage produced milk with higher levels of acetone, 2-butanone, and α-pinene. Results from a sensory evaluation showed that panelists could not detect a difference in flavor between milk from cows fed hay compared with silage. However, a significant number of assessors perceived a difference between milk from cows fed hay compared with milk from cows fed pasture. In a sensory ranking test, the percentage of assessors ranking for the intensity of total (raw milk, fresh milk, and farm milk), sweet (empyreumatic, vanilla, caramel, and sugar), and grassy (grass, leafy vegetable, and plant) flavors was higher for milk from cows fed pasture compared with hay and silage. Using timothy hay, pasture, or silage harvested at a similar stage of development, the current study shows that the taste of milk is affected by the forage type fed to cows. More research is, however, needed to establish a link between the sensory attributes of milk and the observed changes in volatile organic compounds and FA profile.  相似文献   

10.
《Journal of dairy science》2021,104(9):9813-9826
The present study investigated the effect of a high proportion of different forage species in the diet, parity, milking time, and days in milk (DIM) on milk fatty acid (FA) profile, and transfer efficiency of C18:2n-6, C18:3n-3, n-6, and n-3 in dairy cows. Swards with perennial ryegrass [early maturity stage (EPR) and late maturity stage (LPR)], festulolium, tall fescue (TF), red clover (RC), and white clover (WC) were cut in the primary growth, wilted, and ensiled without additives. Thirty-six Danish Holstein cows in an incomplete Latin square design were fed ad libitum with total mixed rations containing a high forage proportion (70% on dry matter basis). The total mixed rations differed only in forage source, which was either 1 of the 6 pure silages or a mixture of LPR silage with either RC or WC silage (50:50 on dry matter basis). Proportion of C18:2n-6 in milk FA was affected by diet, and RC and WC diets resulted in the highest proportion of C18:2n-6 in milk FA (21.6 and 21.8 g/kg of FA, respectively). The highest and lowest milk C18:3n-3 proportion was observed in WC and LPR, respectively. In addition, WC diet resulted in highest transfer efficiency of C18:3n-3 from feed to milk (12.2%) followed by RC diet (10.7%), whereas EPR diet resulted in the lowest transfer efficiency of C18:3n-3 (3.45%). The highest milk proportion of cis-9,trans-11 conjugated linoleic acid (CLA) was observed in cows fed TF (3.20 g/kg of FA), which was 23 to 64% higher than the proportion observed in the cows fed the other diets. The highest α-tocopherol concentration (µg/mL) in milk was observed in EPR (1.15), LPR (1.10), and festulolium (1.06). Primiparous cows showed higher proportion of cis-9,trans-11 CLA (2.63 g/kg of FA) than multiparous cows (2.21 g/kg of FA). Cows early in lactation had a higher proportion of long-chain FA in milk than cows later in lactation, as long-chain FA decreased with 0.184 g/kg of FA per DIM, whereas medium-chain FA increased with 0.181 g/kg of FA per DIM. Proportion of C18:2n-6 in milk from evening milking was higher than in milk from morning milking (16.7 vs. 15.8 g/kg of FA). In conclusion, the results showed that milk FA profile of cows was affected by forage source in the diet, and RC and WC increased the health-promoting FA components, particularly n-3, whereas the TF diet increased proportion of CLA isomers in milk. Proportion of CLA isomers in milk FA from primiparous cows was higher than in milk from multiparous cows. In addition, evening milk contained more FA originating from diets compared with morning milk.  相似文献   

11.
Eight Holstein (189 ± 57 DIM) and 4 Brown Swiss (126 ± 49 DIM) multiparous cows were used in a replicated 4 × 4 Latin square with 28-d periods to determine the minimal dietary concentration of fish oil necessary to maximize milk conjugated linoleic acid (CLA) and vaccenic acid (VA). Treatments consisted of a control diet with a 50:50 ratio of forage to concentrate (dry matter basis), and 3 diets with 2% added fat consisting of 0.33% fish oil, 0.67% fish oil, and 1% fish oil with extruded soybeans providing the balance of added fat. Dry matter intake (23.1, 22.6, 22.8, and 22.9 kg/d, for control, low, medium, and high fish oil diets, respectively) was similar for all diets. Milk production (21.5, 23.7, 22.7, and 24.2 kg/d) was higher for cows fed the fat-supplemented diets vs. the control. Milk fat (4.42, 3.81, 3.80, and 4.03%) and true protein (3.71, 3.58, 3.54, and 3.55%) concentrations decreased when cows were fed diets containing supplemental fat. Concentration of milk cis-9,trans-11 CLA (0.55, 1.17, 1.03, and 1.19 g/100 g of fatty acids) was increased similarly by all diets containing supplemental fat. Milk VA (1.12, 2.47, 2.13, and 2.63 g/100 g of fatty acids) was increased most in milk from cows fed the low and high fish oil diets. Milk total n-3 fatty acids were increased (0.82, 0.96, 0.92, and 1.01 g/100 g of fatty acids) by all fat-supplemented diets. The low fish oil diet was as effective at increasing VA and CLA in milk as the high fish oil diet, showing that only low concentrations of dietary fish oil are necessary for increasing concentrations of VA and CLA in milk.  相似文献   

12.
The objective of this study was to determine the effect of feeding a conjugated linoleic acid (CLA) stimulating diet for an extended period of time on milk cis-9, trans-11 CLA and vaccenic acid (VA) concentrations. Twenty cows (16 Holstein and 4 Brown Swiss) were divided into 2 groups (n = 10 per treatment) for a 10-wk study. Cows in group 1 were fed a traditional corn-soybean-basal diet (control), while those in group 2 were fed a blend of 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans (FMESB) to achieve higher milk fat cis-9, trans-11 CLA and VA. Diets were formulated to contain 18% CP and were composed (dry matter basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Dry matter intake was not affected by diet. Milk production increased in cows fed the FMESB diet. Milk fat and milk protein percentages decreased with the FMESB diet; however, milk fat and protein yields were not affected by treatments. Milk fat cis-9, trans-11 CLA and VA concentration (g/100 of fatty acids) and yield (g/d) were 2.5-fold greater for cows fed the FMESB diet over the 10 wk of fat supplementation. For cows fed the FMESB diet, contents of milk fat cis-9, trans-11 CLA and VA gradually increased from the first week of fat supplementation, reached the highest concentrations in wk 3, then gradually decreased during wk 4 and 5 and then remained relatively constant until wk 10. The concentration of cis-9, trans-11 CLA and VA from the control diet was relatively constant over the 10 wk of fat supplementation. Concentrations of cis-9, trans-11 CLA and VA in milk fat can be increased within a week by feeding a blend of fish meal and extruded soybeans, and that increase remains relatively constant after wk 5 of fat supplementation.  相似文献   

13.
Feeding heat-treated full fat soybeans to cows in early lactation.   总被引:1,自引:0,他引:1  
Forty-six multiparous Holstein cows were fed one of three total mixed diets from 15 to 119 d postpartum with alfalfa silage as the only forage. Each diet contained 50% forage and 50% concentrate on a DM basis. Diets were formulated to be isonitrogenous by replacing corn and solvent soybean meal with raw soybeans or heat-treated soybeans. The proportion of protein supplement in the diet on a DM basis was 10% soybean meal, 13% raw soybeans, or 13% heat-treated soybeans. The soybeans were heat-treated to maximize the amount of available lysine passing to the small intestine. The soybean meal diet was fed to all cows during wk 1 and 2 postpartum for covariate adjustment of DMI and milk production. Intake of DM was similar across treatments. Feeding heat-treated soybeans supported more milk (4.5 kg/d), 3.5% FCM (4.0 kg/d), and milk protein (.09 kg/d) than soybean meal or raw soybeans. Milk fat percentage was not altered by treatments. However, milk protein percentage was depressed in cows fed heat-treated soybeans compared with soybean meal (2.85 vs. 2.99%, respectively). Milk production response of cows fed properly heat-treated soybeans compared with soybean meal with alfalfa silage as the sole forage is thought to be related primarily to improved supply of undegraded intake protein.  相似文献   

14.
The effects of extruded soybeans (ESB) included at 0, 10, or 20% of dry matter (DM) of the diet in combination with sodium bicarbonate (0 vs. 1% bicarbonate added to DM) on rumen fermentation characteristics, production parameters, and fatty acid (FA) profiles of milk fat were examined in 30 midlactation goats and 6 rumen-cannulated goats fed high-concentrate diets (30:70 forage-to-concentrate ratio) ad libitum in a 3 x 2 factorial design. Diets were fed as total mixed rations. The trial lasted 13 wk with the final 9 wk as the test period. Milk yield and composition were recorded each week throughout the trial. Individual samples of milk were taken in wk 4, 7, 10, 11, and 13 to determine FA profile of milk fat. Dry matter intake and intake of net energy for lactation were not affected by dietary treatments. Feeding ESB did not modify ruminal pH or volatile fatty acids concentration in the rumen fluid, but it increased the molar proportion of propionate. Feeding ESB increased fat-corrected milk, milk fat content, and fat yield compared with the control diets. There was no change in milk protein content when ESB were fed. Feeding ESB increased the proportions of oleic, linoleic, and linolenic acids in milk fat at the expense of most of the saturated FA. It also increased the n-6 to n-3 FA ratio of milk. The largest changes in milk yield and milk composition were generally obtained with ESB included at 20% of DM. The addition of sodium bicarbonate tended to increase ruminal pH, VFA concentrations in the rumen fluid, and the molar proportions of acetate. The addition of sodium bicarbonate increased milk fat content and fat yield, with no change in milk FA composition. It is concluded that during midlactation, the inclusion of ESB to 20% of DM prevented low milk fat content for goats fed high-concentrate diets, with no decrease in milk protein content. The addition of sodium bicarbonate may enhance the effects of ESB on milk fat content and fat yield.  相似文献   

15.
Four fistulated primiparous cows (two Holstein and two Brown Swiss) averaging 102 DIM were used in a 4 x 4 Latin square with 3-wk periods to determine the effect of feeding fish oil, extruded soybeans, or their combination on fatty acid profiles of milk and rumen digesta. Experimental diets consisted of: 1) control diet; 2) a diet with 2% (DM basis) added fat from menhaden fish oil; 3) a diet with 2% added fat from extruded soybeans; and 4) a diet with 1% added fat from fish oil and 1% fat from extruded soybeans. All diets consisted of 25% corn silage, 25% alfalfa hay, and 50% concentrate. Milk yields (28.6, 29.7, 29.2, and 28.1 kg/d for control, fish oil, extruded soybeans, and combination diets, respectively) were similar for all fat supplements and control. Milk fat and protein percentages (3.49, 3.08; 3.25, 2.96; 3.47, 3.01; 3.48, 2.99 for diets 1, 2, 3, and 4, respectively) were not affected by fat supplements compared with control. Dry matter intake (23.0, 21.6, 22.7, and 21.6 kg/d) was reduced when diets containing fish oil were fed. Concentrations of conjugated linoleic acid [CLA; cis-9, trans-11 CLA, 0.40, 0.88, 0.87, and 0.80 g/100 g fatty acids (FA)] and transvaccenic acid (TVA, 1.02, 2.34, 2.41, and 2.06 g/100 g of FA) were increased in milk fat by all fat supplements, with no differences in milk CLA and TVA observed among fat supplements. As with milk fat, proportions of ruminal CLA (0.09, 0.26, 0.18, and 0.21 g/100 g of FA) and TVA (2.61, 4.56, 4.61, and 4.39 g/100 g of FA) increased with fat supplements. The effects of fat supplements on ruminal TVA and CLA concentrations were also reflected in rumen FA-salts, free fatty acids, and neutral lipids. The higher TVA to CLA ratio in the rumen compared with milk indicated that fat supplements increased milk CLA concentration mainly by increasing ruminal production of TVA, which also implied the significant role that mammary delta-9 desaturase plays in milk CLA concentrations.  相似文献   

16.
Four ruminally lactating Holstein cows averaging 602 ± 25 kg of body weight and 64 ± 6 d in milk at the beginning of the experiment were randomly assigned to a 4 × 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of α-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health.  相似文献   

17.
Four lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of feeding micronized and extruded flaxseed on milk composition and blood profile in late lactation. Four diets were formulated: a control (C) diet with no flaxseed, a raw flaxseed (RF) diet, a micronized flaxseed (MF) diet, and an extruded flaxseed (EF) diet. Flaxseed diets contained 12.6% flax-seed (dry matter basis). Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection. Feeding flaxseed reduced milk yield and energy-corrected milk by 1.8 and 1.4 kg/d, respectively. Yields of milk protein and casein were also lower for cows fed flaxseed diets than for those fed the C diet. Milk yield (1.6 kg/d) and milk fat percentage (0.4 percentage unit) were lower for cows fed EF than those fed MF. Plasma cholesterol and nonesterified fatty acid concentrations were higher for cows fed flaxseed diets relative to those fed the C diet. Flaxseed supplementation decreased plasma concentrations of medium-chain (MCFA) and saturated (SFA) fatty acids and increased concentrations of long-chain (LCFA) and monounsaturated fatty acids. Feeding flaxseed reduced the concentrations of short-chain fatty acids (SCFA), MCFA, and SFA in milk fat. Consequently, concentrations of LCFA and unsaturated fatty acids were higher for cows fed flaxseed diets than for those fed the C diet. Flaxseed supplementation increased average concentrations of C(18:3) and conjugated linoleic acid by 152 and 68%, respectively. Micronization increased C(18:3) level, and extrusion reduced concentrations of SCFA and SFA in milk. It was concluded that feeding raw or heated flaxseed to dairy cows alters blood and milk fatty acid composition. Feeding extruded flaxseed relative to raw or micronized flaxseed had negative effects on milk yield and milk composition.  相似文献   

18.
This study aimed to evaluate the effect of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on the fatty acid (FA) profile in the milk fat of cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of 13 d of adaptation to diets followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with target proportions of RCS to maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter basis. Increasing the level of RCS in the diet was accompanied by a reduction of linoleic acid content in the diet and decreased linearly the proportions of linoleic acid in the milk up to 4%. Proportions of α-linolenic acid in milk increased 2-fold with RCS60 compared with RCS15, which resulted from the linear increase in α-linolenic acid intake with incremental levels of RCS. Vaccenic acid in the milk fat was reduced by 24%. Rumenic acid, a conjugated linoleic acid (cis-9,trans-11 conjugated linoleic acid) considered to be a human health promoter, was also decreased by 22%. Reduced rumenic acid in the milk fat was probably due to a reduced amount of vaccenic acid produced in the rumen and, consequently, to the low amount of vaccenic acid to be desaturated to rumenic acid in the mammary gland by Δ9-desaturase. Oleic acid was enriched in the milk fat, although the dietary concentration of oleic acid decreased. Stearic acid proportions remained constant with increasing levels of RCS. The proportions of total polyunsaturated FA were increased by 12%, and the long-chain FA proportions increased linearly with increasing levels of RCS. Myristic acid was reduced linearly, but palmitic acid remained constant. Saturated FA was reduced linearly by 2%. Branched-chain FA, which are presumed to possess anticarcinogenic properties, were reduced to a small extent only (quadratic effect). We conclude that replacing maize silage with RCS appears to alter milk FA composition by reducing linoleic acid intake and ruminal biohydrogenation. Feeding RCS represents a strategy to increase intake of α-linolenic acid in dairy cows. However, because changes in the FA profile show positive as well as negative effects, no distinct conclusions can be drawn with regard to human health benefits.  相似文献   

19.
Thirteen multiparous Holstein cows were used in a crossover design that tested the effect of lysolecithin in diets differing in neutral detergent fiber (NDF) and unsaturated fatty acid (FA) concentrations. Experimental periods were 20 d in length and included two 10-d phases. A standard fiber and lower fat diet was fed the first 10 d (30.5% NDF, no added oil, lower-risk phase) and a lower NDF and higher oil diet was fed during the second 10 d (29.0% NDF and 2% oil from whole soybeans and soybean oil, high-risk phase). Treatments were control and 10 g/d of lysolecithin (LYSO) extended in a ground corn carrier. Milk was sampled on d 0, 5, and 10 of each phase for determination of fat and protein concentration and FA profile. We found no effect of treatment or treatment by time interaction for dry matter intake, milk yield, or milk protein concentration. A treatment by time interaction was observed for milk fat concentration and yield. Milk fat concentration was higher in LYSO on d 5 of the lower-risk phase, but decreased progressively in both treatments during the high-risk phase. Milk fat yield was not different among treatments during the lower-risk phase, but was lower in LYSO on d 15 and tended to be lower on d 20 during the high-risk phase. Concentrations of milk de novo FA decreased and preformed FA increased during the high-risk phase, but we found no effect of treatment or treatment by time interactions. We noted an effect of time, but no treatment or treatment by time interactions for milk trans FA isomers. Briefly, trans-11 C18:1 and cis-9,trans-11 conjugated linoleic acid progressively decreased as trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid progressively increased during the high-risk phase. The LYSO increased milk fat concentration when feeding a higher fiber and lower unsaturated FA diet, but decreased milk fat yield when feeding a lower fiber and higher unsaturated FA diet, although biohydrogenation pathways and capacity did not appear to be modified. The effect of lysolecithin on rumen fermentation warrants further investigation, but is not recommended when feeding lower fiber and higher unsaturated fat diets.  相似文献   

20.
Twelve multiparous Holstein cows (63 +/- 24 d in milk) were used in a replicated 4 x 4 Latin square with 28-d periods to evaluate conventional and high oil corn grains when fed at two different forage-to-concentrate ratios. Dietary treatments consisted of conventional or high oil corn supplementing a diet with a 25:25:50 mixture of corn silage: alfalfa: concentrate mix, or a high forage diet with a 30:30:40 mixture of corn silage: alfalfa: concentrate mix. Dry matter intake (28.1, 28.7, 26.9, and 26.2 kg/d for normal diets with conventional and high oil corn, and high forage diets with conventional and high oil corn, respectively) and milk yields (36.8, 37.2, 35.5, and 35.2 kg/d) were similar for conventional and high oil corn diets and were lower with the high forage diet, regardless of corn source. Milk fat concentrations were greater when cows were fed diets containing 60% forage (4.03 vs. 3.88%, for the 60 and 50% forages, respectively), but milk protein concentrations were not affected by forage content. Corn source did not affect milk fat or protein concentrations. Long-chain fatty acid concentrations, unsaturated fatty acid concentrations, and total 18:1 fatty acid concentrations were greater when cows were fed high oil corn but were unaffected by forage content of the diet. Concentrations of transvaccenic acid (0.58, 0.81, 0.62, and 0.69 g/100 g of fatty acids) and cis-9, trans-11 conjugated linoleic acid (0.28, 0.39, 0.32, and 0.33 g/100 g of fatty acids) were greater when cows were fed high oil compared with conventional corn when fed 50% forage but were similar for both corn sources at 60% forage. Total n-3 fatty acids were not affected by corn source or forage content. High forage diets decreased milk production and increased milk fat concentration. Feeding high oil corn increased concentrations of long-chain, unsaturated, transvaccenic, and conjugated linoleic fatty acids in milk; however, production of transvaccenic and conjugated linoleic acids were attenuated by high forage diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号