首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gene transfer into hematopoietic cells using viral vectors has focused mostly on lymphocytes and hematopoietic stem cells (HSCs). HSCs have been considered particularly important as target cells because of their pluripotency and ability to reconstitute hematopoiesis after myeloablation and transplantation. HSCs are believed to have the ability to live a long time, perhaps a lifetime, in the recipient following bone marrow transplantation. Genetic correction of HSCs can therefore potentially last a lifetime and permanently cure hematologic disorders in which genetic deficiencies cause the pathology. Oncoretroviral vectors have been the main vectors used for HSCs because of their ability to integrate into the chromosomes of their target cells. Gene-transfer efficiency of murine HSCs is high using oncoretroviral vectors. In contrast, gene-transfer efficiency using the same viral vectors to transduce human HSCs or HSCs from large animals has been much lower. Although these difficulties may have several causes, the main reason for the low efficiency of human HSC transduction with oncoretroviral vectors is probably because of the nondividing nature of HSCs. Murine HSCs can be easily stimulated to divide in culture, whereas it is more problematic to stimulate human HSCs to divide rapidly in vitro. Because oncoretroviral vectors require dividing target cells for successful nuclear import of the preintegration complex and subsequent integration of the provirus, only the dividing fraction of the target cells can be transduced. This review focuses on gene transfer into human hematopoietic cells, particularly human HSCs. We review the clinical studies that have been reported, including the recent successful gene therapy for X-linked severe combined immunodeficiency. We discuss how the gene-transfer efficiency of human HSCs can be improved using oncoretroviral and lentiviral vectors.  相似文献   

2.
Lentiviral-mediated gene transfer into haematopoietic stem cells   总被引:2,自引:0,他引:2  
OBJECTIVES: Lentiviral vectors can transduce nondividing cells. As most haematopoietic stem cells (HSCs) are nondividing in vivo, lentiviral vectors are promising viral vectors to transfer genes into HSCs. DESIGN AND SETTING: We have used HIV-1 based lentiviral vectors containing the green fluorescent protein (GFP) gene to transduce umbilical cord blood CD34+ and CD34+/CD38- cells prior to transplantation into NOD/SCID mice. RESULTS: High level engraftment of human cells was obtained and transgene expression was seen in both myeloid and lymphoid lineages. Bone marrow from the primary transplant recipients mice was transplanted into secondary recipients. GFP expression was seen in both lymphoid and myeloid cells in the secondary recipients 6 weeks posttransplantation. Human haematopoietic progenitor colonies were grown from both primary and secondary recipients. Over 50% of the haematopoietic colonies in these recipients were positive for the GFP transgene by PCR. Following inverse PCR, amplified fragments were sequenced and integration of the vector into human genomic DNA was demonstrated. Several vectors containing different internal promoters were tested in NOD/SCID mice that had been transplanted with transduced CD34+ and CD34+/CD38- cells. The elongation factor-1alpha (EF-1alpha) promoter gave the highest level of expression, both in the myeloid and lymphoid progeny of the engrafting cells. CONCLUSIONS: These data collectively indicate that candidate human HSCs can be efficiently transduced with lentiviral vectors and that the transgene is highly expressed in their progeny cells.  相似文献   

3.
Goerner M  Horn PA  Peterson L  Kurre P  Storb R  Rasko JE  Kiem HP 《Blood》2001,98(7):2065-2070
Previous studies have shown that the choice of envelope protein (pseudotype) can have a significant effect on the efficiency of retroviral gene transfer into hematopoietic stem cells. This study used a competitive repopulation assay in the dog model to evaluate oncoretroviral vectors carrying the envelope protein of the endogenous feline virus, RD114. CD34-enriched marrow cells were divided into equal aliquots and transduced with vectors produced by the RD114-pseudotype packaging cells FLYRD (LgGLSN and LNX) or by the gibbon ape leukemia virus (GALV)-pseudotype packaging cells PG13 (LNY). A total of 5 dogs were studied. One dog died because of infection before sustained engraftment could be achieved, and monitoring was discontinued after 9 months in another animal that had very low overall gene-marking levels. The 3 remaining animals are alive with follow-ups at 11, 22, and 23 months. Analyses of gene marking frequencies in peripheral blood and marrow by polymerase chain reaction revealed no significant differences between the RD114 and GALV-pseudotype vectors. The LgGLSN vector also contained the enhanced green fluorescent protein (GFP), enabling us to monitor proviral expression by flow cytometry. Up to 10% of peripheral blood cells expressed GFP shortly after transplantation and approximately 6% after the longest follow-up of 23 months. Flow cytometric analysis of hematopoietic subpopulations showed that most of the GFP-expressing cells were granulocytes, although GFP-positive lymphocytes and monocytes were also detected. In summary, these results show that RD114-pseudotype oncoretroviral vectors are able to transduce hematopoietic long-term repopulating cells and, thus, may be useful for human stem cell gene therapy.  相似文献   

4.
Lentiviral vectors are increasingly being used for transferring genes into hematopoietic stem cells (HSCs) due to their ability to transduce nondividing cells. Whereas results in in vitro studies and the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) model have been highly encouraging, studies in large animals have not confirmed the superior transduction of HSCs using lentiviral vectors versus oncoretroviral vectors. In contrast to the stable gene marking we have consistently achieved with oncoretroviral vectors in animals that received myeloablative conditioning, we observed the complete disappearance of genetically modified enhanced green or yellow fluorescent protein-expressing cells in 5 baboons that received transplants of HSCs transduced with lentiviral vectors alone or in combination with oncoretroviral vectors. Immune responses to transgene products have been found to be involved in the disappearance of gene-modified cells after nonmyeloablative conditioning. Thus, we examined whether the disappearance of gene-modified cells after ablative conditioning may be due to an immune response. In 4 of 5 animals, cytotoxic T lymphocytes specific for the transgene protein were readily detected, demonstrating that immune reactions were responsible for the disappearance of the gene-marked cells in the animals. In summary, we report the induction of transgene-specific immune responses after transplantation of lentivirally transduced repopulating cells in a myeloablative setting.  相似文献   

5.
The cytokine tyrosine kinase receptors c-kit and flt3 are expressed and function in early mouse and human hematopoiesis. Through its ability to promote ex vivo expansion and oncoretroviral transduction of primitive human hematopoietic progenitors, the flt3 ligand (FL) has emerged as a key stimulator of candidate human hematopoietic stem cells (HSCs). However, recent studies in the mouse suggest that though it is present on short-term repopulating cells, flt3 is not expressed on bone marrow long-term reconstituting HSCs, the ultimate target for the development of cell replacement and gene therapy. Herein we demonstrate that though only a fraction of human adult bone marrow and cord blood CD34+long-term culture-initiating cells (LTC-ICs) express flt3, most cord blood lymphomyeloid HSCs capable of in vivo reconstituting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice are flt3+. The striking difference in flt3 and c-kit expression on mouse and candidate human HSCs translated into a corresponding difference in flt3 and c-kit function because FL was more efficient than SCF at supporting the survival of candidate human HSCs. In contrast, SCF is far superior to FL as a viability factor for mouse HSCs. Thus, the present data provide compelling evidence for a contrasting expression and response pattern of flt3 and c-kit on mouse and human HSCs.  相似文献   

6.
Zhang CC  Kaba M  Iizuka S  Huynh H  Lodish HF 《Blood》2008,111(7):3415-3423
Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy, but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular, the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that, together with other factors, can expand mouse bone marrow HSCs in culture. Here, we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF, TPO, and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers, as assayed by NOD/SCID transplantation. A serum-free culture containing SCF, TPO, FGF-1, angiopoietin-like 5, and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs, a number potentially applicable to several clinical processes including HSC transplantation.  相似文献   

7.
Horn PA  Topp MS  Morris JC  Riddell SR  Kiem HP 《Blood》2002,100(12):3960-3967
Vector-containing medium harvested from murine packaging cell lines has been shown to contain factors that can negatively influence the transduction and maintenance of hematopoietic stem cells. Thus, we generated a human packaging cell line with a gibbon ape leukemia virus pseudotype (Phoenix-GALV), and we evaluated vectors produced by Phoenix-GALV for their ability to transduce hematopoietic progenitor/stem cells. In 3 baboons, we used a competitive repopulation assay to directly compare GALV-pseudotype retrovirus vectors produced by either Phoenix-GALV or by the NIH 3T3-derived packaging cell line, PG13. In 3 additional baboons we compared Phoenix-GALV-derived vectors to more recently developed lentiviral vectors. Gene transfer efficiency into hematopoietic repopulating cells was assessed by evaluating the number of genetically modified peripheral blood and marrow cells using flow cytometry and real-time polymerase chain reaction. Transduction efficiency of hematopoietic repopulating cells was significantly higher using the Phoenix-GALV-derived vector as compared with the PG13-derived vectors or lentiviral vectors, with stable transduction levels up to 25%. We followed 2 animals for more than one year. Flow cytometric analysis of hematopoietic subpopulations in these animals revealed transgene expression in CD13(+) granulocytes, CD20(+) B lymphocytes, CD3(+) T lymphocytes, CD61(+) platelets, as well as red blood cells, indicating multilineage engraftment of cells transduced by Phoenix-GALV-pseudotype vectors. In addition, transduction of human CD34(+) cells was significantly more efficient than transduction of baboon CD34(+) cells, suggesting that Phoenix-GALV-derived oncoretroviral vectors may be even more efficient in human stem cell gene therapy applications.  相似文献   

8.
Postnatal hematopoietic stem cells (HSCs) from umbilical cord blood and adult marrow/blood have been successfully used for treating various human diseases in the past several decades. However, the availability of optimal numbers of HSCs from autologous patients or allogeneic donors with adequate match remains a great barrier to improve and extend HSC and marrow transplantation to more needing patients. In addition, the inability to expand functional human HSCs to sufficient quantity in the laboratory has hindered our research and understanding of human HSCs and hematopoiesis. Recent development in reprogramming technology has provided patient-specific pluripotent stem cells (iPSCs) as a powerful enabling tool for modeling disease and developing therapeutics. Studies have demonstrated the potential of human iPSCs, which can be expanded exponentially and amenable for genome engineering, for using in modeling both inherited and acquired blood diseases. Proof-of-principle studies have also shown the feasibility of iPSCs in gene and cell therapy. Here, we review the recent development in iPSC-based blood disease modeling, and discuss the unsolved issues and challenges in this new and promising field.  相似文献   

9.
10.
Artemis gene mutations are responsible for the development of a severe combined immunodeficiency [radiation-sensitive (RS) SCID] characterized by a severe B and T cell deficiency and a normal natural killer cell population. To establish the feasibility of a gene therapy approach to the treatment of RS-SCID, we generated a series of lentiviral vectors expressing human Artemis from different promoters and used them to transduce highly purified hematopoietic stem cells (HSCs) from Artemis knockout mice. HSCs transduced by the different viruses were transplanted into either lethally irradiated Rag-1-deficient animals or Artemis knockout mice treated with a nonmyeloablative dose of Busulfan. In both models, transplantation of HSCs transduced by a vector that used a murine phosphoglycerate kinase (PGK) promoter led to a complete functional correction of the immunodeficiency. Corrected animals displayed rescue of mature B cells with normal levels of serum immunoglobulins, together with complete rescue of the T cell compartment as evidenced by the presence of mature T lymphocytes in peripheral blood as well as normal values of thymocytes in thymus. Those B and T cells were capable of activation, as shown both by in vitro stimulation responses and in vivo after immune challenge. Overall, the results indicate that a gene therapy approach for RS-SCID involving the transplantation of genetically modified HSCs is indeed feasible. Furthermore, our studies suggest the possibility that nonmyeloablative conditioning regimens might be effectively used to promote engraftment of genetically modified cells in the case of diseases where standard irradiation-based myeloablative bone marrow transplantation protocols may prove problematic.  相似文献   

11.
Successful gene therapy of beta-thalassemia will require replacement of the abnormal erythroid compartment with erythropoiesis derived from genetically corrected, autologous hematopoietic stem cells (HSCs). However, currently attainable gene transfer efficiencies into human HSCs are unlikely to yield sufficient numbers of corrected cells for a clinical benefit. Here, using a murine model of beta-thalassemia, we demonstrate for the first time that selective enrichment in vivo of transplanted, drug-resistant HSCs can be used therapeutically and may therefore be a useful approach to overcome limiting gene transfer. We used an oncoretroviral vector to transfer a methylguanine methyltransferase (MGMT) drug-resistance gene into normal bone marrow cells. These cells were transplanted into beta-thalassemic mice given nonmyeloablative pretransplantation conditioning with temozolomide (TMZ) and O6-benzylguanine (BG). A majority of mice receiving 2 additional courses of TMZ/BG demonstrated in vivo selection of the drug-resistant cells and amelioration of anemia, compared with untreated control animals. These results were extended using a novel gamma-globin/MGMT dual gene lentiviral vector. Following drug treatment, normal mice that received transduced cells had an average 67-fold increase in gamma-globin expressing red cells. These studies demonstrate that MGMT-based in vivo selection may be useful to increase genetically corrected cells to therapeutic levels in patients with beta-thalassemia.  相似文献   

12.
13.
14.
15.
Abkowitz JL  Robinson AE  Kale S  Long MW  Chen J 《Blood》2003,102(4):1249-1253
We created parabiotic mice, joining ROSA26 and PeP3b animals, to study the trafficking of hematopoietic stem cells (HSCs) from marrow to blood and their return to marrow. The transfer of HSCs was assayed by secondary marrow transplantation and was 1.0% to 2.5% after 3, 6, 8, and 12 weeks. Thus, HSC homeostasis is primarily maintained by the retention of stem cells derived from replication events within the marrow, not the homing and engraftment of HSCs from the circulation. Of interest, the phenotypes of marrow progenitors and granulocytes were similar to those for HSCs, implying that the marrow functions as an intact compartment where differentiating cells derive from endogenous HSC. In contrast, 50% of splenic granulocytes and progenitor cells derived from the parabiotic partner, suggesting splenic progenitor cells were in constant equilibrium with progenitors in blood. In additional studies, animals were exposed to granulocyte-colony-stimulating factor (G-CSF) and stem cell factor at days 17 to 20 of parabiosis and were studied 3 weeks later; 10.1% of marrow HSCs derived from the parabiotic partner. These data imply that HSCs, mobilized to the blood in response to cytokine exposure, are destined to later return to marrow, an observation that supports the concept that the mobilized peripheral blood stem cells used in clinical transplantation function physiologically.  相似文献   

16.
Gene therapy for genetic haematological disorders and immunodeficiencies   总被引:4,自引:0,他引:4  
Gene transfer and autologous transplantation of haematopoietic stem cells (HSCs) from patients with genetic haematological disorders and immunodeficiencies could provide the same benefits as allogeneic HSC transplantation, without the attendant immunological complications. Inefficient gene delivery to human HSCs has imposed the major limitation to successful application of gene therapy. A recently reported clinical trial of gene transfer into HSCs of infants with X-linked severe combined immunodeficiency (SCID) has achieved immune restoration because of the selective outgrowth of the gene-corrected lymphocytes. Newer methods for manipulating HSCs may lead to efficacy for other disorders. The problems and progress in this area are reviewed herein.  相似文献   

17.
Gene transduction of pluripotent human hematopoietic stem cells (HSCs) is necessary for successful gene therapy of genetic disorders involving hematolymphoid cells. Evidence for transduction of pluripotent HSCs can be deduced from the demonstration of a retroviral vector integrated into the same cellular chromosomal DNA site in myeloid and lymphoid cells descended from a common HSC precursor. CD34+ progenitors from human bone marrow and mobilized peripheral blood were transduced by retroviral vectors and used for long-term engraftment in immune-deficient (beige/nude/XIS) mice. Human lymphoid and myeloid populations were recovered from the marrow of the mice after 7-11 months, and individual human granulocyte-macrophage and T-cell clones were isolated and expanded ex vivo. Inverse PCR from the retroviral long terminal repeat into the flanking genomic DNA was performed on each sorted cell population. The recovered cellular DNA segments that flanked proviral integrants were sequenced to confirm identity. Three mice were found (of 24 informative mice) to contain human lymphoid and myeloid populations with identical proviral integration sites, confirming that pluripotent human HSCs had been transduced.  相似文献   

18.
Use of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors, genetic instability, and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34(+) cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/beta-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34(+) cells. Sca1(+)/lineage(-) Ly5.1 mouse hematopoietic cells, transduced with these 2 ankyrin-1 promoter vectors, were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation, high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment), compared with negligible expression in myeloid and lymphoid lineages in blood, BM, spleen, and thymus (0%-4%). The I8/HS-40-containing vector encoding a hybrid human beta/gamma-globin gene led to 43% to 113% human gamma-globin expression/copy of the mouse alpha-globin gene. Thus, modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer, stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.  相似文献   

19.
OBJECTIVE: For the study of the function of genes of interest in hematopoietic stem cells (HSCs) and for successful gene therapy, it is fundamental to develop a method of efficient gene transfer into HSCs. In mice experiments, efforts have been made to raise the transduction efficiency by modifying the vectors, administrating 5-fluorouracil (5-FU) to donor mice, selecting cytokine cocktails to better sustain the long-term repopulating potential of the stem cells, and so on. The objective of this study is to examine whether the use of fibroblast growth factor-1 (FGF-1)-expanded bone marrow cells provide an improved source for retroviral gene delivery to HSCs. MATERIALS AND METHODS: Unfractionated bone marrow cells from one mouse were cultured in serum-free medium containing FGF-1. Both floating and attached cells were transferred to retronectin precoated dishes and infected with virus supernatant from MP34 cells stably transduced with pMY/GFP retrovirus. After 3-day infection, the green fluorescence protein-positive fraction was sorted and the cells were transplanted to lethally irradiated mice. RESULTS: The experiments illustrated that the number of bone marrow-derived competitive repopulation units (CRUs) was increased from 600 to 9300 per mouse after a 3-week culture period with FGF-1. Following retroviral transduction of the expanded cells, the absolute number of sorted retrovirus-transduced CRUs was 4200. Using these retrovirus-transduced cells in noncompetitive reconstitution assay, we achieved radiation protection and long-term bone marrow reconstitution in 100% of the recipients with average myeloid and lymphoid chimerisms of 70% and 50%, respectively, even if we transplanted 150 recipients with cells derived from a single donor mouse. CONCLUSION: In conclusion, FGF-1-expanded bone marrow cells constitute an excellent source of stem cells that could be used in a range of gene delivery protocols.  相似文献   

20.
Pinto do O P  Richter K  Carlsson L 《Blood》2002,99(11):3939-3946
Hematopoietic stem cells (HSCs) are unique in their capacity to maintain blood formation following transplantation into immunocompromised hosts. Expansion of HSCs in vitro is therefore important for many clinical applications but has met with limited success because the mechanisms regulating the self-renewal process are poorly defined. We have previously shown that expression of the LIM-homeobox gene Lhx2 in hematopoietic progenitor cells derived from embryonic stem cells differentiated in vitro generates immortalized multipotent hematopoietic progenitor cell lines. However, HSCs of early embryonic origin, including those derived from differentiated embryonic stem cells, are inefficient in engrafting adult recipients upon transplantation. To address whether Lhx2 can immortalize hematopoietic progenitor/stem cells that can engraft adult recipients, we expressed Lhx2 in hematopoietic progenitor/stem cells derived from adult bone marrow. This approach allowed for the generation of immortalized growth factor-dependent hematopoietic progenitor/stem cell lines that can generate erythroid, myeloid, and lymphoid cells upon transplantation into lethally irradiated mice. When transplanted into stem cell-deficient mice, these cell lines can generate a significant proportion of circulating erythrocytes in primary, secondary, and tertiary recipients for at least 18 months. Thus, Lhx2 immortalizes multipotent hematopoietic progenitor/stem cells that can generate functional progeny following transplantation into lethally irradiated hosts and can long-term repopulate stem cell-deficient hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号