共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of the littoral zone of lakes to a diversity of fish species has been appreciated for many centuries, although the complexity and heterogeneity of this habitat have resulted in a poorer understanding of local fish ecology compared with that achieved for typically much larger but simpler offshore habitats. Lake fish species may occupy the littoral zone permanently or visit it on diel, seasonal or ontogenetic timescales in response to a range of intrinsic and extrinsic factors. The purposes of such occupations include feeding, refuge from predation and, most importantly for many species, reproduction. The primary environmental threats to fish in the littoral zone arise from eutrophication, which may directly or indirectly alter feeding conditions through the loss of macrophytes, from increases or decreases in water level variations and from siltation rates, both of which may interfere with spawning or egg incubation, and from the introduction of alien species, many of which preferentially colonise the littoral zone where they may act as predators, competitors or environmental degraders. The management of these threats is best accomplished through general lake management measures such as the control of nutrient levels, but some actions specific to the littoral zone or its fish populations are also feasible. These include the replacement of lost or damaged spawning substrata, the active management of water levels at appropriate times of year, and, at least potentially, the deployment of artificial structures to provide appropriate physical habitat for adult fish. 相似文献
2.
After two sampling surveys, in 1974–1975 and 1984, and with the use of an Annelid Pollution Index, the existence of a degraded Cystoseira stricta community has been established. The community studied was present on superficial rocky substrates on the French Mediterranean coast in unpolluted or moderately polluted zones although, for the latter, pollution reduction measures had been put into effect. The most polluted station in 1984 was close to the effluent of a coastal village sewage treatment plant. 相似文献
3.
Little is known about the distribution and risk levels of nutrients and organic matter(OM) in the surface sediment of shallow submerged macrophyte-dominated lakes. In the current study, sixty surface sediment samples were collected from Xukou Bay, a typical submerged macrophyte-dominated zone in Lake Taihu, China. A 60-day degradation experiment of Potamogeton malaianus, a dominant species in the bay,was done in the laboratory. The results demonstrated that the ranges of total nitrogen(TN) and t... 相似文献
4.
太湖湖滨带岸线总长405 km,73%以上被防洪大堤所包围,其余部分临近山体,属于典型的大堤型湖滨带.按照湖滨带地形地貌分为大堤型、山坡型、河口型三类,根据水文条件和露滩情况,又将大堤型分为长期露滩、间歇露滩、无滩地型,山坡型分为有滩地型、无滩地型,形成6种类型的湖滨带.根据以上太湖湖滨带划分类型,结合湖滨带生境、气候、水文条件以及植被分布现状等因素,分别采取生态保育、生态修复、生态重建的对策,设计了不同类型的太湖湖滨带生态修复模式,并分别提供了形象的修复模式示意图,以期为太湖及其类似湖滨带的生态修复提供一定的借鉴. 相似文献
5.
利用2010年珠江口外海陆地震联测数据,探测到滨海断裂带在担杆岛外12 km处发育,断裂带主体倾向东南、宽约20 km,沉积层在断裂带内迅速增厚引起陆上固定地震台站的Pg震相在对应断裂带位置的走时明显滞后.通过震相分析和走时正演拟合,获得了滨海断裂带两侧由浅至深的纵波速度结构模型,断裂带内部沉积层速度为1.8~3.5 km/s,上地壳速度5.2~6.1 km/s,下地壳速度为6.3~6.6 km/s,莫霍面的埋深由滨海断裂带陆侧的29 km抬升至其海侧的27 km.滨海断裂带两侧的地壳结构特征明显不同,证实了该断裂带是华南陆区正常型陆壳与南海减薄型陆壳分界断裂的性质.在华南沿海和海陆过渡带的下地壳顶部探测到厚约3 km、层速度为5.5~5.9 km/s的低速层,往海域逐渐减薄尖灭.壳内低速层是地壳中的力学软弱带,与近似正交的NEE向滨海断裂带和NW向断裂带共同组构成了该区地震活动的孕震构造. 相似文献
6.
湖滨带在维持物种多样性、拦截陆源污染物、净化水质等方面发挥着重要作用。近年来,洪泽湖水体污染日益加重,湖滨带面临着围垦、养殖和泥沙淤积等严重威胁。为更好地理解洪泽湖湖滨带浮游动物群落结构的空间格局,运用主成分分析、冗余分析和方差分解,探究了洪泽湖湖滨带浮游动物的密度、生物量和种类结构组成,以及群落多样性和优势种的特征,分析上述参数随环境因子的变化趋势。结果表明,洪泽湖湖滨带浮游动物平均丰度为821.65 ind./L,平均生物量为1247.45μg/L,成子湖西浮游动物丰度较高,物种较为丰富;淮河口和东部湖岸丰度较低,多样性较低。主成分分析和冗余分析结果表明,溶解性总磷、悬浮物、叶绿素a、COD、溶解性有机碳、水草盖度、pH、溶解氧和风浪扰动是湖滨带主要环境影响因子,与轮虫物种的空间分布具有显著相关性。方差分解结果表明,轮虫主要受到水化学环境因子及其与食物饵料的交互作用,枝角类受水深、浊度和悬浮物等物理生境因子的影响,磷酸盐、pH、风浪扰动和悬浮物与水化学的交互作用对桡足类有明显影响,多样性指数主要受水化学环境因子、物理生境因子、食物饵料的交互作用影响。可见,加强洪泽湖湖滨带生态环境保... 相似文献
7.
This study focused on clogging processes and on the benthic microalgal and meiofaunal assemblage in the sandy littoral zone of Lake Tegel, which are significantly involved in bank filtration, in a long-term. Our approach combined field studies and “in situ” experiments to highlight the structure of the biological active filter zone as well as the mechanisms and effects of clogging in the interstices that influence the infiltration process.Campaigns to measure “in situ” infiltration rates and hydraulic potential were conducted monthly from March 2004 to April 2005. Meiofaunal abundances and fine particulate organic matter (FPOM) were determined every 6 weeks in freeze cores down to depths of 50 cm. In parallel, concentrations of carbon, nitrogen and chlorophyll a were measured in samples of unfrozen sediment cores, that were divided in 1-cm steps down to depths of ≥10 cm. Similar sediment profiles were generated for analysis of colloidal carbohydrates, extracellular polymeric substances (EPS) and proteins between December 2005 and June 2006. Electron microscopy was used to visualize biofilm structure. Long-term experiments with natural FPOM and melamine resin particles as fluorescent tracers were performed to study “in situ” particle retention and transport, respectively. Additionally seston input was quantified during a 1-week period in April 2005.Infiltration rates showed a high temporal and spatial variability, but were not correlated with hydraulic conductivities as hydraulic gradients changed a lot. Likewise a correlation between infiltration rates and hydraulic potentials was not observed, indicating clogging processes. These are triggered to a high extend by biological compounds. In addition, seston input and intermittent gas intrusion are considered to reduce the hydraulic conductivity considerably. No significant “in situ” transport of inert natural fluorescent tracers was observed. However, a complete and permanent clogging of the sandy sediment does not occur, and daily infiltration rates of 0.7-27 L m −2 h −1 (mean 9 L m −2 h −1) guarantee a sufficient water supply by bank filtration for decades. 相似文献
8.
Abstract Sediments deposited off the Nicoya Peninsula advect large volumes of water as they enter the Costa Rica subduction zone. Seismic reflection data, together with results from Ocean Drilling Program Leg 170, show that hemipelagic mud comprises the upper ∼135 m of the sediment column (ranging from 0 to 210 m). The lower ∼215 m of the sediment column (ranging from 0 to 470 m) is pelagic carbonate ooze. We analyzed samples from 60 shallow (<7 m) cores to characterize the spatial variability of sediment composition on the incoming Cocos Plate. The bulk hemipelagic sediment is 10 wt% opal and 60 wt% smectite on average, with no significant variations along strike; the pelagic chalk contains approximately 2 wt% opal and <1 wt% smectite. Initially, most of the water (96%) in the subducting sediment is stored in pore spaces, but the pore water is expelled during the early stages of subduction by compaction and tectonic consolidation. Approximately 3.6% of the sediment's total water volume enters the subduction zone as interlayer water in smectite; only 0.4% of the water is bound in opal. Once subducting strata reach depths greater than 6 km (more than 30 km inboard of the subduction front), porosity drops to less than 15%, and temperature rises to greater than 60°C. Under those conditions, discrete pulses of opal and smectite dehydration should create local compartments of fluid overpressure, which probably influence fluid flow patterns and reduce effective stress along the plate boundary fault. 相似文献
9.
For predicting the evolution of solute concentrations in groundwater and testing the impact of remediation policies, a coupling between the agronomical model STICS and the hydrogeological model MODCOU was implemented. When applied to the Seine River basin, this model accurately represents the temporal evolution of average nitrate concentrations in the aquifer, but with large local errors. We propose an improvement to the simple unsaturated zone (UZ) scheme NonsatSW used in STICS–MODCOU. The modifications are based on a comparison with the mechanistic model Metis considered as a reference as it solves Richards' equation. A more realistic saturation profile and a varying percolation rate are integrated in NonsatSW. This new model, named NonsatVG, is assessed by comparing it with NonsatSW and Metis. In an ideal case, NonsatVG generates a solute transfer and a dispersion closer to that of Metis than of NonsatSW. In real cases, without additional calibration, NonsatVG and Metis simulate better the average transfer velocities of the observed nitrate profiles. Furthermore, modifications in NonsatVG give a direct relationship between the depth of the water table and the saturation profile. We obtain, therefore, as in Metis, an evolution of the solute transfer velocity depending on the piezometric level. These dynamics are not simulated in NonsatSW. Despite a modified water transfer through the UZ, NonsatVG is also as valid as NonsatSW in the modelling of water transfer to the saturated zone. Finally, an application to the Seine basin shows that solute transfer velocities are lower with NonsatVG than with NonsatSW, but are in better agreement with literature. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
Plastic properties of materials with garnet structure have been studied under wide temperature conditions, ranging from room temperature to 95% of the melting temperatures, using uniaxial compression and hot microhardness tests. Garnets studied include single crystals of oxide garnets (Y 3Al 5O 12, Gd 3Ga 5O 12 and Y 3Fe 5O 12) and silicate garnets (various solid solutions, including grossular, almandine, andradite, pyrope, spessartine and uvarovite). Both uniaxial compression and hot hardness tests indicate that there is a general trend in the plasticity of garnets when the data are compared at normalized conditions (T/T m andσ/μ), and that the resistance to plastic deformation in garnets is significantly higher than most of the other minerals in the Earth's mantle. Based on both stress-dip tests and microstructural observations, it is proposed that the creep strength of garnet is largely controlled by the resistance to dislocation glide rather than by recovery processes. This conclusion is consistent with the high Peierls stress inferred from the hot hardness tests. The high Peierls stress in garnets is, presumably, due to the large unit cell (i.e., long Burgers vectors) and/or the bcc packing, which are common to all garnets. We postulate, therefore, that the present results can be applied to the strength of high-pressure garnet (majorite) and suggest that garnet-rich layers in the Earth, such as subducted oceanic crust in the transition zone or a possibly garnet-rich (bottom part of the) transition zone, will be considerably stronger than surrounding regions. 相似文献
11.
A detailed model was formulated to describe the non-passive transport of water-soluble chemicals in the unsaturated zone and used to illustrate one-dimensional infiltration and redistribution of alcohol–water mixtures. The model includes the dependence of density, viscosity, surface tension, molecular diffusion coefficient in the liquid-phase, and gas–liquid partition coefficient on the aqueous mixture composition. It also takes into account the decrease in the gas–liquid partition coefficient at high capillary pressures, in accordance with Kelvin’s equation for multi-component mixtures. Simulation of butanol–water mixtures infiltration in sand was in agreement with the experimental data and simulations reported in the literature. Simulation of methanol infiltration and redistribution in two different soils showed that methanol concentration significantly affects volumetric liquid content and concentration profiles, as well as the normalized volatilization and evaporation fluxes. Dispersion in the liquid-phase was the predominant mechanism in the transport of methanol when dispersivity at saturation was set to 7.8 cm. Liquid flow was mainly due to capillary pressure gradients induced by changes in volumetric liquid content. However, for dispersivity at saturation set to 0.2 cm, changes in surface tension due to variation in composition induced important liquid flow and convection in the liquid-phase was the most active transport mechanism. When the Kelvin effect was ignored within the soil, the gas-phase diffusion was significantly lower, leading to lower evaporation flux of water and higher volumetric liquid contents near the soil surface. 相似文献
13.
测定和分析湖北省21个浅水湖泊沿岸带底柄藻类的现存量,底柄硅藻的种类组成、细胞密度、多样性指数及其群落结构特征,并结合理化指标对水质状况进行评价.结果表明:调查期间,不同湖泊底柄藻类的现存量和底柄硅藻细胞密度分别介于1.01-40.82μg/cm2和0.09×106-14.20×106cells/cm2之间,它们在所研... 相似文献
14.
We propose and validate a new sampling method to assess the presence, abundance and distribution of macrophytes in circular-shaped lakes according to the requirements of the Water Framework Directive (WFD2000/60/EC). The results of the macrophyte survey, and in particular of macrophyte diversity, obtained using this method are also discussed.The sampling is based on randomly selected transects homogeneously distributed around the perimeter of the lake. The number of transects is proportional to the lake's size. The method was validated on six Italian volcanic lakes using computational resampling procedures on a total of 126 transects.Using resampling procedures, we show that the proposed approach identifies more than 75% of the overall species richness through a moderate sampling effort. According to our results, Charophytes dominate aquatic vegetation in Italian volcanic lakes. Species diversity is highest at shallow depths, whereas the most abundant species, such as Chara polyacantha, are located at an intermediate depth between the shoreline and the maximum growing depth. 相似文献
15.
为探究湖滨带藻类水华期水体异味物质的空间分布规律,2019年6—10月对巢湖湖滨带水体理化参数和异味物质进行月度调查,分析湖滨带水体异味物质的空间分布特征,并探讨影响其空间分布差异的主要因素。结果表明:巢湖湖滨带藻类水华期水体异味物质浓度在空间上总体表现为西北部湖区最高,南部湖区次之,东北部湖区和北部湖区最低的分布特征,藻类生物量高低及其分解是水体异味物质产生空间分布差异的主要原因。风向和风速间接影响了湖滨带水体异味物质的空间分布,其中北部湖区受风速和风向的影响最为明显,其次是南部湖区和东北部湖区,西北部湖区影响最小。此外,湖滨带植被通过影响该区域藻类水华堆积及消散过程加剧了水体中异味物质的富集。 相似文献
16.
In the ocean, wind-generated kinetic energy (KE) manifests itself primarily in balanced currents and near-inertial waves. The dynamics of these flows is strongly constrained by the Earth’s rotation, causing the KE in balanced currents to follow an inverse cascade but also preventing wave-wave interactions from fluxing energy in the near-inertial band to lower frequencies and higher vertical wavenumbers. How wind-generated KE is transferred to small-scale turbulence and dissipated is thus a non-trivial problem. This article presents a review of recent theoretical calculations and numerical simulations that demonstrate how some surprising modifications to internal wave physics by the lateral density gradients present at ocean fronts allow for strong interactions between balanced currents and near-inertial waves that ultimately result in energy loss for both types of motion. 相似文献
17.
We determined the partition coefficients of 19 elements between metallic liquid and silicate liquid at 20 GPa and 2500°C, and between metallic liquid and silicate perovskite at 27 GPa and 2200°C. Remarkable differences were observed in the partitioning behaviors of Si, P, W, Re, and Pb among the silicate liquid, perovskite, and magnesiowüstite coexisting with metallic liquid, reflecting incompatibility of the elements in the silicate or oxide phase. We could not observe any significant difference in the partitioning behaviors of V, Cr, Mn, Co, Ni, and Cu among the phases coexisting with metallic liquid. Comparison of the present partitioning data with those obtained previously at lower pressure and temperature suggests that the exchange partition coefficients, Kmet/sil, of Co, Ni, Mo, and W decrease, whereas those of V, Cr, and Mn increase and tend to approach unity with increasing pressure and temperature. We also made preliminary experiments to clarify the effect of sulfur on the partitioning behaviors. Sulfur lowers the exchange partition coefficients, Kmet/sil, of Mo and W between metallic liquid and silicate liquid significantly at 20 GPa and 2300°C. The mantle abundances of Co, Ni, Cu, Mo, and W calculated for the metal-silicate equilibrium model are lower than those of the real mantle, whereas P, K, and Mn are overabundant in the calculated mantle. The discrepancies in the abundances of Co and Ni could be explained by the chemical equilibrium at higher pressure and temperature. Large discrepancies in Mo and W between the calculated and real mantles could be accounted for by the effect of sulfur combined with the effects of pressure and temperature on the chemical equilibrium. The mantle abundances of P, K, and Cu could be accounted for by volatile loss in the nebula, perhaps before accretion of the Earth, combined with the chemical equilibrium at higher pressure and temperature. Thus the observed mantle abundances of P, K, Co, Ni, Cu, Mo, and W may be consistent with a model of sulfur-bearing metal-silicate equilibrium in lower-mantle conditions. 相似文献
18.
Riparian invasion by non-native trees may lead to changes in the quality of leaf litter inputs into freshwater ecosystems. Different plant species may affect the community of decomposers and the rate of litter decay in different ways. We studied the microbial colonization and decomposition of leaf litter of the invasive to Lithuania Acer negundo and native Alnus glutinosa during 64-day litterbag experiments in the littoral zones of mesotrophic and eutrophic lakes. The decomposition of A. negundo leaf litter proceeded faster than that of A. glutinosa irrespective of differences in the trophic conditions of the lakes. The amount of terrestrial and cellulose-degrading fungi (during the initial period) and bacterial numbers (during the experiment) were higher on A. negundo leaves than on A. glutinosa in both lakes. Differences in the assemblages of aquatic fungi colonizing the leaves of both types might be one of the reasons causing variation in their decay. The trophic conditions of the lakes did not significantly determine the extent of differences in decomposition rates between the two leaf species, but affected the microbial decomposers. The sporulation rate and diversity of aquatic fungi, especially on A. glutinosa leaves, was higher in the mesotrophic lake than in the eutrophic lake, while heterotrophic bacteria were more numerous on the leaves in the eutrophic lake. Generally, differences in the colonization dynamics of heterotrophs and the faster decay of A. negundo litter than of A. glutinosa suggest that the replacement of native riparian species such as the dominating A. glutinosa by invasive A. negundo may cause changes of organic matter processing in the littoral zones of lakes. 相似文献
20.
The concentrations of helium and carbon in fluorite associated with Cretaceous to Neogene (90–13 Ma) granitic magmatism in the Japanese arc have been measured. Concentrations of Li, U, Th and Gd were measured to correct for secondary generated 3He. The CO 2/ 3He of fluorites are almost uniform (1.5×10 10–4×10 10) and in fair agreement with the range of present island arc volcanic gases. The calculated mantle C contribution in the Mesozoic subduction zone appear to have been identical to the present one (7–19%) indicating that the C flux from the mantle in supra-subduction zone environments has remained fairly constant during the past 70 million years. 相似文献
|