首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
响应面法对绿色木霉产纤维素酶固态发酵条件优化   总被引:2,自引:0,他引:2  
为探讨绿色木霉固态发酵产生纤维素酶的最佳发酵条件,在单因素分析的基础上,采用Box-Benhnken方法设计实验,选取麸皮与秸秆粉质量比、培养基含水量和初始pH值作为影响因素,以产酶量为响应值建立二次回归方程,并通过响应曲面分析法分析数据并确定优化条件。结果显示,在不同条件下绿色木霉产纤维素酶活力存在显著差异(P0.05),采用响应面法在培养温度29℃,硫酸铵添加量为2%时,获得了最适培养基成分为麸皮秸秆粉比例1.37:1,含水率250%(10 g干基),初始pH6.04,在72 h获得了最大产酶量,酶活为59.72 U·g-1,与基础培养基相比有近20%的提高。  相似文献   

2.
【目的】以棉花秸秆作为发酵基质,优化黑曲霉(Aspergillus niger)ZD固体发酵产纤维素酶的发酵条件。【方法】以固体发酵条件(棉花秸秆和玉米粉的比例、发酵时间、接种率、含水量和pH值)为优化因素,通过单因素试验和Plackett-Burman试验,确定主要影响因素;再由最陡爬坡试验确定优化中心点,最后通过 Box-Behnken中心组合设计确定主要影响因素及其交互作用对固体发酵产酶的影响,并对其进行回归分析。【结果】由单因素试验和Plackett-Burman试验确定碳氮比,接种量和含水率为主要影响因素;最陡爬坡试验确定棉花秸秆与玉米粉的比例4∶1,接种量10%和含水率60%为中心点;Box-Behnken中心组合试验确定最佳发酵条件:棉花秸秆和玉米粉的比例为4.4∶1,接种量8.12%,含水率60%,发酵时间40 d,pH为4,此条件下羧甲基纤维素钠酶活最高,为310.885 U/mL;比未优化条件下的酶活207.496 U/mL提高了49.8%。【结论】确定黑曲霉ZD利用棉花秸秆固体发酵产纤维素酶的最优条件,为利用该菌制备棉花秸秆发酵饲料,降解棉花秸秆纤维素含量,提供了理论依据和工艺参数。  相似文献   

3.
纤维素酶高产菌株的选育及产酶条件的研究   总被引:20,自引:0,他引:20  
利用产纤维素酶的微生物分解废弃物(如农作物秸秆)不仅可以减少污染,还可以节省能源.该实验以康氏木霉TR为出发菌株,经过紫外线诱变,结合双层平板分离技术选育出1株纤维素酶活力明显提高的菌株TR6.并通过对康氏木霉固体发酵培养基、接种量、氮源、培养时间和培养温度等培养条件的研究,通过测定其所产纤维素酶的CMA和FPA酶活,找到了最佳的产酶条件.即:秸秆粉∶麸皮=1∶1,固液比=1∶3,添加硫酸铵为氮源,添加量为2%,接种量5%,30℃培养84h左右为宜.CMC,FPA酶活分别达到468.27U/g和275.31U/g.  相似文献   

4.
采用正交试验和单因子试验对间型脉孢菌固体发酵产纤维素酶条件及酶学性质进行了研究,测定了CMC酶、β-葡萄糖苷酶和滤纸酶活力,以CMC酶和β-葡萄糖苷酶为主要参考指标,结果表明:以麸皮米糠为碳源且比例为1∶1、硫酸铵的浓度为3%、料液比为1∶1.5为最佳产酶培养基,在初始pH值为7.0、温度为34℃、培养时间为108 h的条件下纤维素酶活力较高,CMC酶活、FAP酶活和β-葡萄糖苷酶活分别为668.0、162.5、939.5 U/g,酶反应最适温度为55~60℃,最适pH值为4.0~4.5。  相似文献   

5.
为了探索鹅源草酸青霉(Penicillium oxalicum Currie&Thom)F67产纤维素酶的最佳培养基组成(碳源、氮源)及发酵条件(接种量、温度、pH和发酵时间),试验以鹅源草酸青霉为研究菌株,采用液体发酵培养法,通过对C1酶活、Cx酶活、β-葡萄糖苷酶活和滤纸酶活(FPA)的测定,研究了液体发酵培养基组成及发酵条件对其产纤维素酶活力的影响,并通过L9(34)正交试验筛选出了草酸青霉液体发酵产纤维素酶不同组分的最佳发酵条件.结果表明:(1)羧甲基纤维素钠(CMC-Na)可以强烈诱导草酸青霉产纤维素酶,C1酶、Cx酶、β-葡萄糖苷酶和FPA酶活分别达到507.104U·mL-1、9.353U·mL-1、642.989U·mL-1和149.576U·mL-1(p<0.01);以硝酸铵为氮源时,Cx酶活力最高,比基础组提高了1.342倍(p<0.01);而以尿素为氮源时,C1酶活、β-葡聚糖苷酶活和FPA最高,分别比基础组提高了1.212,0.285和2.055倍(p<0.01).(2)CX酶活、C1酶活和β-葡聚糖苷酶活最高时的最适接种量分别为3%、7%和7%;发酵温度分别为30℃、28℃和30℃;培养基起始pH均为5.5;发酵时间分别为96h、72h和96h.  相似文献   

6.
白腐真菌固体发酵玉米秸秆产漆酶条件的优化   总被引:1,自引:0,他引:1  
采用单因子比较法对白腐真茼的固体发酵玉米秸秆培养基和产漆酶条件进行了优化,得出最佳的产漆酶发酵培养基组分为:玉米秸秆粉79%,麸皮20%.MgSO4 0.4%,KH2PO4 0.6%,最佳的产漆酶发酵条件为料水比1:3,pH值7.0,接种量5%,温度26℃,在此条件下,漆酶最高活性迭0.954U.  相似文献   

7.
以玉米秸秆为原料,利用菌株发酵生产纤维素酶,通过单因素试验和正交试验,考察了培养温度、接种量、发酵时间对纤维素酶活力的影响,确定了固体发酵玉米秸秆产纤维素酶的最佳工艺参数。试验结果表明,各因素对纤维素酶活力的影响程度由大到小依次为培养温度、接种量、发酵时间;最佳发酵条件为接种量8%,培养温度30℃的条件下发酵66h,具有最大产酶量142.55U/ml。  相似文献   

8.
黑曲霉突变株ZM-8产纤维素酶条件的研究   总被引:1,自引:1,他引:1  
经筛选的黑曲霉突变株ZM-8是一株高产纤维素酶菌株,其β-葡萄糖苷酶活性特别高.采用正交试验对其产酶条件进行了优化,结果表明其最适培养基配方为:氮源(NH4)3PO4,含氮量0.6%,含水量300%;玉米秸秆粉与麸皮质量比为4∶1,接种量1∶30.最佳培养条件为:培养温度为35℃,培养时间为72 h,初始pH值为6.5.在优化后的培养条件下测定纤维素FPU酶、C1酶、CMC酶和β-葡萄糖苷酶的活力分别为5.25、0.48、19.60U/mL和42.86 U/mL,约为优化前各酶活的3.0倍、1.8倍、2.5倍和2.1倍.  相似文献   

9.
航天诱变黑曲霉ZM-8菌株固态发酵产β-葡萄糖苷酶的研究   总被引:3,自引:2,他引:1  
以小麦秸秆和麸皮为原料,利用固态发酵对航天诱变后筛选的黑曲霉ZM-8菌株生产β-葡萄糖苷酶的条件和酶学特性进行了研究.结果表明,ZM-8菌株最佳培养基配方为:小麦秸秆粉与麸皮质量比为8∶2,氮源为4%的(NH4)2SO4,含水量200%;最佳的培养条件为:接种量为6%;初始pH值为6.5;培养温度为28℃;培养时间为144 h.在以上的培养基和培养条件下ZM-8菌株的β-葡萄糖苷酶酶活达到21.74 U/g,约为出发菌种的2.24倍.酶学实验表明,β-葡萄糖苷酶最适作用温度50℃,最适作用pH 5.0.  相似文献   

10.
以稻草粉与麦麸为主料,对影响康宁木霉(Trichoderma koningii)固态发酵生产纤维素酶的因素,如秸秆粉和麦麸的用量比、料水比、初始pH值、氮源及其浓度、发酵温度和时间等进行了研究.结果显示,秸秆∶麦麸比为3∶2、料水比为1∶2、初始pH值为6.0、以0.5%尿素液为氮源、36℃培养72 h的产酶活力最高,CMC酶和β-葡萄糖苷酶分别比基础发酵条件下增加了44.8%和301.6%.  相似文献   

11.
纤维素酶高产菌株的筛选及最适产酶条件   总被引:2,自引:0,他引:2  
从本实验室保存的57株菌株中筛选出一株可高效降解纤维素的纤维素酶高产菌株哈茨木霉APS62,其滤纸酶活力(FPA)为4.981 IU.g-1,是对照里氏木霉模式菌株APS63的3.02倍.产酶条件优化研究的结果表明,以稻草粉为底物,APS62菌株产滤纸酶的最适条件为:培养温度28℃,培养时间3 d,稻草粉与麸皮比5∶0,接种量6%,氮源为NH4NO3(总氮量0.4%),培养基起始pH为5.0,吐温80含量0.1%.此条件下的FPA为6.125 IU.g-1,比优化前提高8.10%.  相似文献   

12.
灰绿青霉固态发酵秸秆产纤维素酶的研究   总被引:1,自引:0,他引:1  
以麦秆和麸皮为主要原料,通过正交试验和单因素试验对灰绿青霉固态发酵秸秆产纤维素酶的最适培养基配方和最佳产酶条件进行了优化,比较了发酵前后小麦秸秆的纤维素含量.结果表明,最佳培养基:氮源为(NH4)3PO4,pH4.5,含水量为200%,麦秆∶麸皮为3∶2;最佳产酶条件:培养时间为72 h、温度为40℃、初始pH5.0、含氮量为0.6%、接种量为20%、半密闭培养.经最佳条件发酵处理,发酵前后小麦秸秆的纤维素有不同程度的变化,其中NDF、ADF、纤维素含量和半纤维素含量分别下降4.29%3、.89%4、.66%和5.82%,木质素含量无明显变化.  相似文献   

13.
绿色木霉纤维素酶AS3.3032固态发酵的研究   总被引:7,自引:0,他引:7  
该研究以麦麸和汽爆蔗渣为主要原料 ,采用绿色木霉AS3 30 32 (Trichodermaviride)固态发酵生产纤维素酶 ,研究了氮源、碳源、表面活性剂、接种方式、培养基含水量、培养温度、培养基起始pH值对绿色木霉产酶活力的影响 .研究结果表明 :①以硫酸铵为氮源 ,其FPA ,CMC ,和 β Gase酶活力均较高 ,每克干曲分别高达 12 2 5FPAU g ,1470 0CMCU g和 119 3β GaseU g ;②碳源以麸蔗比为 3∶2时 ,FPA ,β Gase和CMC酶活力均为最高 ,每克干曲分别高达 138 2FPAU g ,134 6 β GaseU g和 16 0 3 1CMCU g ;③添加 0 1%的Tween 80和 0 5 %~ 0 7%的洗衣粉可分别提高FPA ,β Gase和CMC为 2 3倍、2 8倍、2 3倍和 3 1倍、3 7倍、3 0倍 ;④培养基含水量、培养温度、培养起始pH值分别为 2 5 0 % ,2 8℃和pH3 5 ,产酶活力最高  相似文献   

14.
采用响应面法对枝状枝孢菌(Cladosporium cladosporioides)产葡聚糖内切酶(CMCase)的液体发酵培养基进行优化。用单因素试验确定发酵培养基的最佳碳源、氮源和无机盐;通过中心组合试验和响应面法优化以上因素,得到的优化发酵培养基为:麦秸23.18 g.L-1、麦麸30.00 g.L-1、酵母膏13.62 g.L-1、KH2PO44.60 g.L-1、NaCl 4.60 g.L-1、MgSO4.7 H2O 0.46 g.L-1。在此条件下,该菌发酵液中CMCase活力达2.80 U.mL-1,较优化前提高了2.18倍。  相似文献   

15.
康氏木霉固态发酵生产纤维素酶条件的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以麸皮和玉米芯为主要原料,采用康氏木霉(Trichoderma koningn)固态发酵生产纤维素酶,并对 影响纤维素酶活性的碳源和氮源配比、外加氮源、培养基初始pH值、培养时间和表面活性剂等因素进行了研究。结 果表明,培养基碳源和氮源配比以麸皮:玉米芯为3:2时最适合;外加氮源以质量分数0.8%硝酸铵产纤维素酶 活性最高;培养基初始pH值为3.0时,纤维素酶活力最高,是对照的1.37倍;表面活性剂以质量分数0.50%“奇 强”洗洁精对提高纤维素酶活性的作用最显著,较对照提高12.4%;培养时间为72 h时,纤维素酶活性最高。  相似文献   

16.
绿色木霉-M1固态发酵产纤维素酶条件研究   总被引:1,自引:0,他引:1  
为了用廉价基质生产纤维素酶,对绿色木霉-M1利用稻草和麸皮固态发酵生产纤维素酶的条件进行了研究。结果表明,固态发酵产纤维素酶的较优条件为培养温度28℃,料液比为1∶2.5,氮源浓度1.5%,稻草和麸皮比例为7∶3;在此条件下,接种10%液态种子进行培养,酶活力在0~60 h逐渐上升,60~72 h缓慢下降,72 h后酶活重新上升,108 h酶活达最大值。  相似文献   

17.
殷实  刘海臣  付雅静 《安徽农业科学》2010,38(12):6534-6537
[目的]筛选高效纤维素分解菌优化纤维素酶的发酵工艺条件。[方法]从造纸厂废纸浆中筛选了一株纤维素分解菌株JX-2,考察碳源、氮源、碳氮比、营养盐、pH值、装液量、接种量以及发酵时间对产酶特性的影响。[结果]较优的培养基组成是麸皮1.5%,豆饼粉0.5%,NaCl0.5%,KH2PO40.1%,发酵的较优条件是培养液的初始pH值10.0,发酵温度37℃,装液量20%,接种量2%,发酵时间48h,该条件下滤纸酶活力高达1158.6U/ml发酵液。[结论]该菌株为专性嗜碱好氧菌,发酵的较优条件之一指标已具备一定的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号