首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary copper deficiency in animals is often associated with cardiac enlargement and anemia. In this study we examined the hypothesis that anemia leads to a high cardiac output state that results in work-induced (physiological) cardiac hypertrophy. Blood pressure was measured by carotid cannulation and cardiac output was measured by aortic flow probe in anesthetized, open-chested rats that had been subjected to various degrees of dietary copper deficiency for five weeks. Cardiac output was unaffected by dietary copper deficiency. However, the components of cardiac output were found to vary reciprocally, heart rate decreasing and stroke volume increasing with copper deficiency. Further, total peripheral resistance, calculated as the ratio of mean arterial blood pressure and cardiac output, was depressed by dietary copper deficiency. These findings suggest that bradycardia and depression of vascular resistance induced by copper deficiency contribute to increased venous filling and a resultant increase in stroke volume; these factors may lead to cardiac hypertrophy. A significant correlation between stroke volume and heart weight in rats of varying copper status supports this conclusion.  相似文献   

2.
To establish whether thyroid hormone modifies the heart rate directly or through an action on other neuroendocrine modulators, the authors have examined several animals models differing in the plasma levels of such compounds. Induction of the hypothyroid state in rats produced a slow onset of bradycardia, which may be removed by a prolonged triiodothyronine treatment. The involvement of TSH was excluded as, by comparing thyroidectomized, hypophysectomized and cold exposed rats, the heart rate was found to vary according to the thyroid levels and not to the TSH levels. Moreover growth hormone, corticotropin and gonadotropins do not influence the heart rate, as the bradycardia induced by hypophysectomy was fully removed by triiodothyronine treatment. The lack of influence by ACTH and GnH was confirmed by treatment of thyroidectomized rats with corticosteroids or testosterone, respectively. Finally, thyroid hormone did not act on the heart rate by changing the norepinephrine output at the sympathetic nerve endings in the heart. In fact, thyroidectomy produced a more intense bradycardia than sympathectomy, and such bradycardia was equally removed by triiodothyronine treatment in thyroidectomized rats and in thyroidectomized and then sympathectomized ones. The authors suggest that the direct effect of the thyroid hormone on cardiac chronotropism is due to an early enhancement of beta-adrenoceptors, followed by a late modification of the electrophysiological properties of the myocardium.  相似文献   

3.
The development of cardiac hypertrophy was examined in rats that had undergone sympathectomy with 6-hydroxydopamine. After 4 days, the rats were given severely intoxicating doses of ethanol or isocalorically paired quantities of maltose-dextrin by intubation at 8-h intervals up to 48 h. The ethanol and sugar intubations were applied in a nutritionally adequate, liquid diet mix. The extent of the peripheral sympathectomy was evident from the absence of detectable quantities of noradrenaline in hearts of animals injected with the neurotoxin and in the reduced levels of excreted noradrenaline. The adrenal medullary catecholamine contents of sympathectomized rats were unchanged in the absence of ethanol; there were reduced quantities of adrenaline in the medullae of rats given ethanol. The adrenal glands of rats given ethanol were larger than those from control animals. Urine samples from sympathectomized and control rats, given ethanol, displayed equivalent increases in excreted adrenaline and noradrenaline. Increases in relative cardiac weight were evident in hearts from sympathectomized animals after 4 days of sympathectomy, and this change reached significance in the hearts from 6-hydroxydopamine-treated rats after a further 2 days on the control diet. Hearts from animals exposed to ethanol showed a marked, rapid development of cardiomegaly; after 24 h there was an increased mass of some 17%, which was sustained over the remaining 24-h period. The proportion of cardiac protein did not differ in the large hearts from ethanol-treated animals and those from their controls, hence myocardial oedema could not account for the increase in weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Presynaptic neural projections are thought to participate in the maturation of postsynaptic sensitivity to neurotransmitters. In the current study, we have examined the effects of sympathectomy with 6-hydroxydopamine on the ontogeny of the linkage of beta-adrenergic receptors to cardiac growth and heart rate control in the rat. Destruction of sympathetic projections at birth compromised the ability of beta-receptor stimulation to evoke cardiac hypertrophy, a defect which persisted into young adulthood. The chronotropic response to beta-receptor activation, assessed by acute challenge with a submaximally-effective dose of isoproterenol, also exhibited a slowed development, but did eventually achieve normal sensitivity. In contrast, neonatal sympathectomy had only minor effects on resting heart rate, basal heart rate (the intrinsic rate in the absence of autonomic input) or maximal heart rate; these animals also showed beta-receptor desensitization of chronotropic action in response to chronic isoproterenol treatment. Chronic isoproterenol treatment itself lowered the basal heart rate, regardless of whether animals were normal or sympathectomized. Thus, during critical developmental periods, sympathetic input to beta-receptors selectively programmes the linkage between postsynaptic receptors, tissue growth and heart rate.  相似文献   

5.
Developmental studies indicate a role for GDNF in survival of motor, autonomic, and sensory neurons. However, no study attempted to demonstrate its participation in autonomic nerve regeneration. In this work, chemical sympathectomy by 6-hydroxydopamine provided the model for assessing heart GDNF expression during denervation and axonal regrowth. A glyoxylic acid-based histochemical technique evaluated the noradrenergic innervation. ELISA determined GDNF levels after concentrating heart homogenates. Light and ultrastructural in situ hybridization and immunocytochemistry were used for identifying cells expressing GDNF mRNA and protein. In control rats, the GDNF cardiac levels were significantly higher in 37-day-old animals in comparison with those aging 60 days. In sympathectomized rats, GDNF cardiac levels were significantly higher 7 days after sympathectomy and dropped to control levels at day 30. GDNF mRNA was expressed in atrial and ventricular myocytes from normal and sympathectomized rats. GDNF immunoreactivity occurred on atrial granules and quantitative analysis in electron micrographs confirmed ELISA-obtained data. In ventricular myocytes gold particles occurred sparsely. These findings constitute the first evidence for GDNF synthesis by cardiomyocytes and postulate a role for this factor soon after cardiac sympathetic denervation, probably in nerve regeneration. In atrial myocytes, GDNF is probably secreted by regulated pathway.  相似文献   

6.
Previous studies have shown that the intrinsic heart rate (IHR) may undergo changes, e.g., decrease after long-term endurance training. The mechanism for this adaptation is not known. In this study, rats were subjected to long-term oral treatment with the beta receptor stimulating drug prenalterol. During the treatment period heart rates at rest and during submaximal exercise were measured. Heart rate after 30 min rest and also 2 min after exercise was higher in the treated animals, due to the beta stimulation. The treated rats had a significantly lower heart rate increase during exercise than untreated controls, consistent with a partial beta-blocking effect of the drug in states with a high endogenous sympathetic activity. Therefore, the animals were not trained but only exposed to the increased stimulation of cardiac beta receptors accomplished by the drug while at rest. After 25 weeks, prenalterol was withdrawn and the IHR was measured in situ after a denervation procedure. The treatment with prenalterol had not altered the IHR. Our previous results from training studies indicate that a heart rate increase above a certain level or the stimulation for a lower setting of the IHR as seen after endurance training. In this study chronic beta receptor stimulation with prenalterol did not influence the IHR, which supports that hypothesis.  相似文献   

7.
The present investigation was undertaken to evaluate the vagal function of trained (T) and sedentary (S) rats by use of different approaches in the same animal. After 13 wk of exercise training (treadmill for 1 h 5 times/wk at 26.8 m/min and 15% grade), T rats had a resting heart rate (HR) slightly but significantly lower than S rats (299 +/- 3 vs. 308 +/- 3 beats/min). T rats had marked reduction of the intrinsic HR (329 +/- 4 vs. 369 +/- 5 beats/min) after blockade by methylatropine and propranolol. They also exhibited depressed vagal and sympathetic tonus. Baroreflex bradycardia (phenylephrine injections) was reduced, bradycardic responses produced by electrical stimulation of the vagus were depressed, and responses to methacholine injection were decreased in T rats. Therefore several evidences of vagal function impairment were observed in T rats. The resting bradycardia after exercise training is more likely to be dependent on alterations of the pacemaker cells, inasmuch as the intrinsic HR was markedly reduced.  相似文献   

8.
Chemical sympathectomy and bilateral vagotomy were used to evaluate the contribution of each division of the autonomic nervous system in the electrophysiological actions of ouabain. Intact and chemically sympathectomized dogs were given successive and cumulative doses of ouabain until toxicity became manifest (ventricular extrasystoles and (or) ventricular tachycardia). An additional group of normal and sympathectomized animals was also submitted to bilateral vagotomy in the presence of a therapeutic dose of ouabain. Sinus cycle length, AH interval of the His bundle electrogram, atrioventricular junctional effective and functional refractory periods were increased by ouabain at therapeutic doses. These effects were no different in sympathectomized dogs than in intact dogs, indicating the absence of any significant contribution of efferent sympathetic neural activity. However, our results suggested that vagal enhancement was the main mechanism whereby ouabain produced sinus bradycardia and depression of atrioventricular conduction. Sympathectomy with 6-OHDA did not modify nor abolish ouabain toxicity. However, toxic doses were significantly higher in sympathectomized animals than in normal animals. Considering that increasing heart rate by cardiac pacing or vagotomy significantly lowered toxic doses of ouabain in both intact and sympathectomized dogs, it is possible that sympathectomy could influence ouabain toxicity by altering heart rate alone.  相似文献   

9.
Exercise-induced alterations in cardiac function during graded cycling with submaximal and maximal intensities were studied in 13 trained and 13 untrained young men. Stroke volume (SV) and stroke index (SI) at rest and during submaximal and maximal exercise, determined by impedance cardiography, were consistently greater in the trained than in the less fit group. Training-induced bradycardia was evident in the trained group at rest and during submaximal exercise. Even when SV and SI were compared at the same absolute heart rate and left ventricular ejection time, those for the trained group were markedly greater than those for the untrained. SV for the untrained group was relatively diminished above the work rate corresponding to the anaerobic threshold. The difference in SV during exercise may be attributed to inadequate filling due to the smaller stretch of myocardial fibers in diastole and/or lesser systolic emptying of the left ventricle due to the reduced myocardial contractility in systole of untrained individuals.  相似文献   

10.
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.  相似文献   

11.
Thyroxine (T4) administered to rats in a dose of 1 mg/kg for 12 days induces cardiac hypertrophy. The purpose of the present study was to determine the effect of prophylactic + simultaneous digitoxin treatments on the development of T4-induced cardiac hypertrophy. Digitoxin (1 mg/kg body weight) was given per os, once daily for 6 days prior to T4 administration and continued simultaneously with T4 treatment. To determine myocardial enlargement, wet heart weight, myocardial nucleic acid and protein were measured. Digitoxin treatment induced a slight increase in wet ventricle weight and a significant elevation of myocardial RNA content (mg/ventricles) and concentration (mg/g). At the same time, the degree of T4-induced cardiac hypertrophy in digitoxin-treated and untreated animals was nearly the same. On the basis of these results it can be stated that--unlike the cardiac hypertrophy induced by pressure overload or hypoxia,--the T4-induced cardiac hypertrophy is not altered by digitoxin administration.  相似文献   

12.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Regulation of heart rate was studied in rats receiving either i.v. saline at 64 microL/min or synthetic 28-residue rat atrial natriuretic peptide (ANF) at a dose sufficient to decrease mean arterial blood pressure by 10%. Autonomic influences were deduced from steady-state heart rate responses of each group to propranolol, atropine, or propranolol and atropine combined. A multiplicative model of heart rate control was used to derive quantitatively from the data the modulation of intrinsic heart rate by sympathetic and parasympathetic mechanisms. Animals receiving ANF showed a lower heart rate than control animals. This relative bradycardia was abolished by atropine. Blocking of sympathetic effects with propranolol had no effect on basal heart rate in either group, and atropinization led to significant increases in heart rate in both groups of rats. Mathematical analysis of the results showed that the bradycardia produced by ANF was due predominantly to a reduced intrinsic heart rate and to enhanced vagal inhibition of postganglionic sympathetic activity. Parasympathetic contribution to heart rate in the absence of sympathetic activity was negligible in control rats and small during ANF. We conclude that the major influences of ANF on heart rate control are a decrease of intrinsic heart rate and enhanced parasympathetic inhibition of postganglionic presynaptic sympathetic activity.  相似文献   

14.
Cardiac sympathetic nerve activity is an important short-term controller of cardiac function and arterial pressure. Studies also suggest that long-term increases in cardiac sympathetic nerve activity may contribute to hypertension, coronary artery disease, and cardiac remodeling in heart failure. However, our understanding of the role of cardiac sympathetic nerves in chronic models of cardiovascular disease has been limited by inadequate experimental approaches. The present study was conducted to develop a surgical method to surgically denervate the sympathetic nerves of the rat heart for long-term cardiovascular studies. We characterized the effect of cardiac sympathetic denervation on basal levels of mean arterial pressure (MAP) and heart rate (HR) and the responses to a chronic administration of atenolol, a beta1-adrenoceptor antagonist. Rats were instrumented with telemetry transmitters for continuous recording of MAP and HR. After a 4-day baseline period, the rats were subjected to bilateral stellate ganglionectomy (SGX; n=9) or sham surgery (Sham; n=8). Seven days following SGX or Sham, the rats were administered atenolol for 5 days, followed by a 7-day recovery period. Following a transient decrease, SGX had no effect on basal MAP but decreased HR compared with baseline and Sham rats. Five days of atenolol treatment decreased MAP similarly in SGX and Sham rats. Atenolol resulted in a marked bradycardia in Sham rats but had a neglible effects on HR in SGX rats. The measurement of the content of cardiac catecholamines in all cardiac chambers at the end of the study verified a successful sympathetic denervation. This study confirms that bilateral SGX is a useful method to study the contribution of cardiac sympathetic nerves on the regulation of cardiac function. Moreover, these results suggest that cardiac sympathetic nerves are relatively unimportant in maintaining the basal level of MAP or the depressor response to atenolol in conscious, unrestrained rats.  相似文献   

15.
Although blood pressure rises markedly after acute sinoaortic denervation, animals with chronic sinoaortic denervation have normal or only slightly elevated mean arterial pressures. The present study was performed to determine whether reflexes from cardiac receptors exert antihypertensive effects and thereby lower blood pressure in animals with chronic sinoaortic denervation. We made multiple measurements of blood pressures in dogs with chronic sinoaortic denervation before and after their hearts were denervated surgically. Mean arterial pressure after cardiac denervation (100.3 +/- 4.2 mm Hg) was not significantly different from the mean pressures recorded before cardiac denervation in these sinoaortic-denervated dogs (104.8 +/- 3.1 mm Hg). Also, mean heart rate after cardiac denervation (107.4 +/- 5.5 beats/min) did not differ significantly from the mean heart rate recorded before cardiac denervation (107.2 +/- 5.9 beats/min). Cardiac denervation did, however, appear to reduce the lability of both blood pressure and heart rate in sinoaortic-denervated dogs. We conclude that cardiac receptors are not responsible for maintaining arterial pressure within essentially normal limits in animals with chronic sinoaortic denervation.  相似文献   

16.
This study was designed to investigate the expression of short‐chain acyl‐CoA dehydrogenase (SCAD), a key enzyme of fatty acid β‐oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time‐dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hypertensive rats (SHR). On the other hand, swim‐trained rats developed physiological cardiac hypertrophy, whereas SHR developed pathological cardiac hypertrophy. The two kinds of cardiac hypertrophy exhibited divergent SCAD changes in myocardial fatty acids utilization. In addition, the expression of SCAD was significantly decreased in pathological cardiomyocyte hypertrophy, however, increased in physiological cardiomyocyte hypertrophy. SCAD siRNA treatment triggered the pathological cardiomyocyte hypertrophy, which showed that the down‐regulation of SCAD expression may play an important role in pathological cardiac hypertrophy. The changes in peroxisome proliferator‐activated receptor α (PPARα) was accordant with that of SCAD. Moreover, the specific PPARα ligand fenofibrate treatment increased the expression of SCAD and inhibited pathological cardiac hypertrophy. Therefore, we speculate that the down‐regulated expression of SCAD in pathological cardiac hypertrophy may be responsible for ‘the recapitulation of foetal energy metabolism’. The deactivation of PPARα may result in the decrease in SCAD expression in pathological cardiac hypertrophy. Changes in SCAD are different in pathological and physiological cardiac hypertrophy, which may be used as the molecular markers of pathological and physiological cardiac hypertrophy.  相似文献   

17.
AimsThis study was performed to assess isolated and combined effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of the β1- and β2-adrenergic receptors in the heart of rats.Main methodsWistar rats were randomly divided into four groups and submitted to a 6-week treatment with nandrolone and/or resistance training. Cardiac hypertrophy was accessed by the ratio of heart weight to the final body weight. Blood pressure was determined by a computerized tail-cuff system. Electrocardiography analyses were performed. Western blotting was used to access the protein levels of the β1- and β2-adrenergic receptors in the right atrium and left ventricle.Key findingsBoth resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased systolic blood pressure depending on the treatment time. Resistance training decreased systolic, diastolic and mean arterial blood pressure, as well as induced resting bradycardia. Nandrolone prolonged the QTc interval for both trained and non-trained groups when they were compared to their respective vehicle-treated one. Nandrolone increased the expression of β1- and β2-adrenergic receptors in the right atrium for both trained and non-trained groups when they were compared to their respective vehicle-treated one.SignificanceThis study indicated that nandrolone, associated or not with resistance training increases blood pressure depending on the treatment time, induces prolongation of the QTc interval, and increases the expression of β1- and β2-adrenergic receptors in the cardiac right atrium, but not in the left ventricle.  相似文献   

18.
Several studies have examined the role of mast cells in the myocardial response to injury such as that caused by hypertension and ischemia-reperfusion. However, little is known about the influence of mast cells on normal myocardial structure and function. The present experiments examined cardiac function in Langendorff-perfused hearts isolated from 6- and 9-mo-old male mast cell-deficient (Ws/Ws) and mast cell-competent rats. A fluid-filled balloon catheter was used to measure left ventricular diastolic and systolic function at increasing preload volumes. At 6 mo of age, mast cell-deficient rats showed a slight cardiac hypertrophy (as monitored by heart weight and heart weight-to-body weight ratio) but no significant change in maximum observed systolic or diastolic function. In contrast, at 9 mo of age, the mast cell-deficient group showed no signs of hypertrophy but displayed a diastolic dysfunction characterized by decreased compliance without a significant decline in maximum observed basal -dP/dtmax. There were no significant differences in maximum observed values for measures of systolic function (developed pressure and +dP/dtmax). In summary, the results of this study in adult rats suggest that mast cells influence cardiac function in the absence of injury and that observed differences between mast cell-competent and -deficient animals vary with age. Thus it is important to consider these "physiological" actions and resulting changes in function when studying effects of insult in mast cell-deficient models.  相似文献   

19.
Hyperthyroid patients develop left ventricular hypertrophy associated with alterations of several cardiac parameters such as heart rate, cardiac output, cardiac contraction and hemodynamic overload leading to cardiac complications. Although cardiac hypertrophy and contractile abnormality occur, interstitial fibrosis in the heart usually does not take place in hyperthyroid condition. Therefore, in the present study, the mechanism regulating myocardial extracellular matrix (ECM) remodeling in hyperthyroid condition was investigated. Cardiac hypertrophy was developed in Sprague-Dawley rats by administration of 3,5,3'-triiodo-L-thyronine (triiodothyronine, 8 microg/100g BW, ip, SID) and glucocorticosteroid, dexamethasone (DEX, 35 microg/100g BW, po, SID), which is also an inducer of hypertrophy for 15 days. Heart/Body weight ratio and atrial and brain natriuretic peptide mRNAs were significantly increased in both triiodothyronine- and DEX-treated rats compared to control. Collagens-I and -III deposition in the left ventricular sections was reduced in triiodothyronine-treated rats, whereas in DEX-treated animals those were increased compared to control. While mRNA and protein levels of procollagens-I and -III were increased with triiodothyronine (p<0.01), the levels of mature collagens-I and -III were decreased. The levels of the mature collagens were increased with DEX compared to control. MMP-1 activity in the serum and left ventricle was higher with reduced levels of TIMPs-3 and -4 in the left ventricle of triiodothyronine-treated rats. The results suggest that accelerated breakdown of collagens-I and -III by MMP-1 due to suppression of the endogenous TIMPs plays an important role in regulating the ECM in myocardium of hyperthyroid rat.  相似文献   

20.
Low body weight and cardiac tolerance to ischemia in neonatal rats   总被引:1,自引:0,他引:1  
Adaptation to intermittent high altitude hypoxia (IHAH) increases tolerance of the isolated neonatal rat heart to ischemia and potentiates protection induced by ischemic preconditioning. In addition to the protective effect, IHAH significantly reduces growth of the animals. The aim of the present study was, therefore, to find out whether low body weight per se might influence cardiac sensitivity to oxygen deprivation. Low body weight was induced either by IHAH (barochamber, 8 h/day, 5000 m) from postnatal day 1 to 10 (HLBW), or by a higher number of sucklings per mother (14 instead of 8), again from postnatal day 1 to 10 (NLBW). Control animals (8 littermates per mother) were kept under normoxic conditions (Controls). The recovery of developed force following 40 min of global ischemia was measured in isolated hearts from 10-day-old rats by perfusing them in the Langendorff mode with Krebs-Henseleit solution at constant pressure, temperature and rate. Ischemic preconditioning was induced by three 3-min periods of global ischemia, each separated by 5-min periods of reperfusion. Low body weight in HLBW and NLBW groups was accompanied by increased hematocrit, and decrease in absolute heart weight (both wet and dry) and developed force. On the other hand, higher hydration, increased cardiac tolerance to ischemia and potentiation of protection by ischemic preconditioning were observed in HLBW rats only. This experimental group also exhibited the highest relative heart weight. It may be concluded that low body weight alone does not influence cardiac tolerance to ischemia in neonatal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号