首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The atomic force microscope (AFM) can be used to perform surface force measurements in the quasi-static mode (cantilever is not oscillating) to investigate nanoscale surface properties. Nevertheless, there is still a lack of literature proposing a complete systematic and rigorous experimental procedure that enables one to obtain reproducible and significant quantitative data. This article focuses on the fundamental experimental difficulties arising when making force curve measurements with the AFM in air. On the basis of this AFM calibration procedure, quantitative assessment values were used to determine, in situ, SAM (or Self Assembled Monolayer)-tip thermodynamic work of adhesion at a local scale, which have been found to be in good agreement with quoted values. Finally, determination of surface energies of functionalised silicon wafers (as received, CH3, OH functionalised silicon wafers) with the AFM (at a local scale) is also proposed and compared with the values obtained by wettability (at a macroscopic scale). In particular, the effect of the capillary forces is discussed.  相似文献   

2.
Abstract

This study was aimed at deposition of self-assembled monolayers (SAMs) using vinyltriethoxysilane (VTES) and vinyltrichlorosilane (VTCS) molecules chemisorbed on silicon dioxide surfaces. The kinetics of SAM formation on planar glass substrates and silicon wafers was characterized by contact angle measurements. The surface free energy and its dispersion and polar components enabled to estimate the time of immersion required to deposit compact SAMs. Adsorption of organosilane molecules as a function of immersion time was characterized by X-ray photoelectron spectroscopy. The SAM thickness was evaluated by spectroscopic ellipsometry. Surface topography of deposited layers was investigated by atomic force microscopy (AFM). The VTCS/glass combination exhibited the fastest kinetics but the deposit was not uniform and included local agglomerates. The hydrophobic vinyl groups at deposit surface resulted in a surface free energy of 32 mJ/m2.  相似文献   

3.
Platinum particles of 2 nm diameter have been immobilised on oxidised silicon wafers by spin coating with colloidal solutions and characterised by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The coverage and dispersion of the Pt colloids on the Si wafer are controlled by varying the concentration and the spin speed. Under optimal conditions mono-dispersed Pt colloids on silicon wafers are prepared. For the Pt colloids immobilised on the Si wafer, the majority of the stabilising ligands are removed through a reduction (with H2 at 200°C) or an oxidation (in air at 300°C) procedure. AFM showed that particle sizes are retained after the reduction procedure, while significant sintering occurs after oxidation. The mechanism of ligand removal was studied using an in situ XPS reaction cell. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Frictional behaviour of vertically aligned carbon nanotube films   总被引:2,自引:0,他引:2  
Wei Zhang  Binshi Xu  Yoshinori Koga 《Carbon》2009,47(3):926-15836
Vertically aligned CNT films were grown on polycrystalline β-SiC wafers by the surface decomposition method. Their frictional behaviours were investigated by AFM at the nanometer scales. Compared with DLC film and silicon wafers, they demonstrate an extremely low friction coefficient at the nanometer scale about 0.03-0.04. The effect of the surface topography on the friction coefficient is obvious for the aligned CNT film sliding at the nanometer scale. This implies that the excellent tribological properties of the vertically aligned CNT films, combined with their small dimensions and structural perfection, might lead to significant improvement of the performance of nano-devices.  相似文献   

5.
Supported lipid bilayers (SLBs) were prepared by deposition of unilamellar vesicles on a silicon substrate. Atomic force microscopy (AFM) and a new Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) developed by us were used to trace the dynamic formation of lipid bilayers on the silicon surfaces. The evolution from deformation of vesicles to formation of bilayers can be distinguished clearly by AFM imaging. MTR-IR provided high quality infrared spectra of ultrathin lipid bilayers with high sensitivity and high signal to noise ratio (SNR). The structural and orientational changes during vesicle’s fusion were monitored with MTR-IR. MTR-IR shows superiority over other infrared approaches for ultrathin films on standard silicon wafers in view of its economy and high sensitivity. Both MTR-IR and AFM results were consistent with each other and they provided more information for understanding the self-assembling procedure of SLBs.  相似文献   

6.
Diamond-on-insulator (DOI) wafers featuring ultrananocrystalline diamond are studied via atomic force microscopy, profilometer and wafer bow measurements. Plasma-activated direct bonding of DOI wafers to thermal oxide grown silicon wafers is investigated under vacuum. DOI wafer with chemical mechanical polishing (CMP) on the diamond surface makes a poor bonding to silicon wafers with thermal oxide. Our results show that plasma enhanced chemical vapor deposition of silicon dioxide on top of the DOI wafer, CMP of the oxide layer and annealing are essential to achieve very high quality direct bonding to thermal oxide grown on silicon wafers. Plasma activation results in the formation of high quality bonds without exceeding 550 °C in the direct wafer bonding process.  相似文献   

7.
Semiconducting CrSi2 nanocrystallites (NCs) were grown by reactive deposition epitaxy of Cr onto n -type silicon and covered with a 50-nm epitaxial silicon cap. Two types of samples were investigated: in one of them, the NCs were localized near the deposition depth, and in the other they migrated near the surface. The electrical characteristics were investigated in Schottky junctions by current-voltage and capacitance-voltage measurements. Atomic force microscopy (AFM), conductive AFM and scanning probe capacitance microscopy (SCM) were applied to reveal morphology and local electrical properties. The scanning probe methods yielded specific information, and tapping-mode AFM has shown up to 13-nm-high large-area protrusions not seen in the contact-mode AFM. The electrical interaction of the vibrating scanning tip results in virtual deformation of the surface. SCM has revealed NCs deep below the surface not seen by AFM. The electrically active probe yielded significantly better spatial resolution than AFM. The conductive AFM measurements have shown that the Cr-related point defects near the surface are responsible for the leakage of the macroscopic Schottky junctions, and also that NCs near the surface are sensitive to the mechanical and electrical stress induced by the scanning probe.  相似文献   

8.
The effectiveness of surfactants (sodium dodecyl sulfate and dodecyl amine hydrochloride) in the cleaning of silicon wafers has been investigated using atomic force microscopy and image analysis. Recognizing that the surface of SC-1-cleaned silicon wafers is essentially SiO2 atomic force microscopy was used to determine the interaction forces for the silica/silica and silica/alumina systems with and without surfactant present in solution. Experimental force vs. separation distance curves were found to be in good agreement with theoretical predictions based on electrostatic and van der Waals interactions. Interestingly, the pull-off forces obtained from atomic force microscopy measurements were very close to the adhesion forces calculated on the basis of van der Waals interactions at very close separations. The results from image analysis further confirmed the usefulness of surfactants in reducing particle adhesion and their effectiveness in cleaning silicon wafers. Finally, the results from this study suggest that a more complete understanding of particle interaction forces should be of considerable importance to the electronics industry.  相似文献   

9.
Atomic force microscopy (AFM) was used to measure the surface forces between a silicon nitride AFM tip and a deposited layer of Athabasca bitumen; the measurements were carried out in pure water (pH 6.0–6.5) and 1 mM KCl solution (pH 9). An AFM pyramidal‐shaped tip was moved stepwise using an operator‐controlled offset (10 nm per step) and the tip‐bitumen colloidal forces were measured at each location. Surface charge densities at the bitumen‐water interface were calculated from the measured colloidal forces using a theoretical model that combined both electrostatic and van der Waals forces for a conical tip‐flat substrate system. Fitted values of the bitumen surface charge density ranged from –0.002 to –0.004 C/m2 in water (pH 6.0–6.5), and –0.005 to –0.022 C/m2 in KCl solution (pH 9); the variation of local charge density along the bitumen surface appeared random. Bitumen surface potentials were also calculated from the surface charge densities using the Graham equation; the values ranged from –90 to –130 mV in water, and –45 to –110 mV in KCl solution. This study suggests the presence of bitumen surface domains of different surface charge densities/surface potentials. The domains are estimated to have characteristic sizes of 20 to 40 nm or less.  相似文献   

10.
Direct measurements of forces between silicon nitride surfaces in the presence of poly(acrylic acid) (PAA) are presented. The force-distance curves were obtained at pH > pHiep with an atomic force microscopy (AFM) colloidal-probe technique using a novel spherical silicon nitride probe attached to the AFM cantilever. We found that PAA adsorbs onto the negatively charged silicon nitride surface, which results in an increased repulsive surface potential. The steric contribution to the interparticle repulsion is small and the layer conformation remains flat even at high surface potentials or high ionic strength. The general features of the stabilization of ceramic powders with PAA are discussed; we suggest that PAA adsorbs onto silicon nitride by sequential adsorption of neighboring segments ("zipping"), which results in a flat conformation. In contrast, the long-range steric force found in the ZrO2/PAA system at pH > pHiep arises because the stretched equilibrium bulk conformation of the highly charged polymer is preserved via the formation of strong, irreversible surface-segment bonds on adsorption.  相似文献   

11.
Purpose: The aim of this work was to estimate the multifractal spectra of 3D surface roughness for unworn hydrogel contact lenses (CL), obtained with atomic force microscopy (AFM) analysis. Materials and methods: Contact lenses made from vifilcon A (Focus® Monthly Toric Visitint® model, CIBA Vision Corp.) were investigated. CL surface roughness was studied by AFM in tapping‐mode™, in an aqueous environment, on square areas ranging from 1 to 4 μm2. A detailed methodology for CL surface multifractal characterization, which may be applied for AFM data, was presented. Results: The CL surface roughness revealed multifractal geometry at various magnifications. The generalized dimension Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Conclusions: Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters. POLYM. ENG. SCI., 54:1066–1080, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
Atomic force microscopy (AFM) has been used to measure the adhesion force between functionalised AFM tips and smooth surfaces of an EN AW-6082-T6 aluminium alloy, both before and after application of different conversion coatings. In addition, the surface of a sapphire sample was studied as a model aluminium surface. The results obtained for the sapphire surface were highly reproducible, and were used as a mean to establish proper routines for the more complex industrial surfaces. The adhesion force between a chromate conversion-coated (CCC) EN AW-6082-T6 aluminium alloy and a COOH functionalised tip was significantly increased compared to the uncoated surface, probably as a result of strong hydrogen bonding. However, the adhesion force decreased with time during the first 24 h after treatment due to aging of the CCC. Chromate-free Ti–Zr-based treatment also increased the adhesion, but the adhesion force varied significantly due to non-uniform deposition and composition of the conversion coating. The measured AFM adhesion forces correlated qualitatively with macroscopic adhesion test results obtained previously for these specific conversion coatings. The AFM technique may thus provide useful information on the adhesion behaviour of heterogeneous conversion-coated aluminium surfaces.  相似文献   

13.
This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM.  相似文献   

14.
The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on homoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1% methane concentration a maximum of the growth rate near <100> and a minimum near <111> is detected. Increasing the methane concentration up to 5% shifts the maximum towards <110> while the minimum stays at <111>. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at <111>. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes.  相似文献   

15.
Fluorinated amorphous carbon (a-C:F) thin films are deposited on both flat silicon and porous silicon (PS) surfaces via laser ablation of a polished polytetrafluoroethylene (PTFE). Porous silicon (PS) is prepared by anodic etching of p-type silicon wafers in HF based solution. The film deposited on the flat silicon surface exhibits a highly hydrophobic state with water contact angle (WCA) of ~ 146°. In comparison, the surface of film deposited on PS layer shows a roll-off superhydrophobic state, where the water droplet is seen to roll off without wetting its surface with contact angle hysteresis of ~ 4.5°. Micro-Raman results show that the graphite domain of the film deposited on PS has higher disorder level and lower average gain size. The effect of substrate porosity on chemical composition of deposited films has been investigated by using both Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the porous substrate improves the incorporation of the fluorine into the film. Atomic force microscopy (AFM) results revealed that the film deposited on PS has higher surface roughness and lower grain size as compared to the film deposited on flat silicon surface.  相似文献   

16.
The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.  相似文献   

17.
18.
An atomic force microscope (AFM) in conjunction with the colloid probe technique has been used to study the electrical double layer interactions between a 0.75 μm silica sphere and a polymeric microfiltration track etch Cyclopore membrane (nominally 1 μm) in aqueous solutions. The silica colloid probe was used to image the membrane surface (using the double layer mode) at different imaging forces in high purity water and at constant imaging force in sodium chloride solutions of different ionic strengths at pH 8. Force-distance measurements show clearly how the sphere detects the membrane surface. Quality of images produced from scanning the 0.75 μm silica particle across the surface deteriorates with increasing distance between the silica sphere and membrane surface. Such images were compared with those obtained from scanning a sharp silicon nitride tip over the membrane surface.  相似文献   

19.
A polyhedral oligomeric silsesquioxane (POSS) methacrylate monomer, i.e. 3-(3,5,7,9,11,13,15-heptacyclopentyl-pentacyclo [9.5.1.1.3,91.5,1517,13]-octasiloxane-1-yl) propyl methacrylate (POSS-MA), was directly grafted from flat silicon wafers using surface-initiated atom transfer radical polymerization (ATRP). Two methods were used to improve the system livingness and control of polymer molecular weights. By ‘adding free initiator’ method, a linear relationship between the grafted poly(POSS-MA) layer thickness and monomer conversion was observed. By ‘adding deactivator’ method, the poly(POSS-MA) thickness increased linearly with reaction time. Poly(POSS-MA) layers up to 40 nm were obtained. The chemical compositions measured by X-ray photoelectron spectroscopy (XPS) agreed well with their theoretical values. Water contact angle measurements revealed that the grafted poly(POSS-MA) was extremely hydrophobic. The surface morphologies of the grafted polymer layers were studied by an atom force microscopy (AFM).  相似文献   

20.
This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号