首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Metal single-atom and internal structural defects typically coexist in M–N–C materials obtained through the existing basic pyrolysis processes. Identifying a correlation between them to understand the structure–activity relationship and achieve efficient catalytic performance is important, particularly for the rare-earth (RE) elements with rich electron orbitals and strong coordination capabilities. Herein, a novel single-atom catalyst based on the RE element lutetium is successfully synthesized on a N–C support. Structural and simulation analyses demonstrate that the formation of a Lu N6 structural site with an individual defect because of pyrolysis is thermodynamically favorable in Lu–N–C. Using KHCO3-based electrolytes facilitates the fall of the K+ cations into the defective sites of Lu–N–C, thus enabling improved CO2 capture and activation, which increases the catalyst conductivity for Lu–N–C. In this study, the catalyst exhibits a Faradaic efficiency of 95.1% for CO at a current density of 18.2 mA cm−2 during carbon dioxide reduction reaction. This study thus provides new insights into understanding RE–N–C materials for energy utilization.  相似文献   

2.
The ambient electrochemical N2 reduction reaction (NRR) is a future approach for the artificial NH3 synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber–Bosch technology. However, the challenge of N2 activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB2 nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH3 with a production rate of 30.5 µg h−1 mgcat−1 and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH3 production is attributed to the large amount of active B vacancies on the surface of NbB2 NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N2 on both unsaturated Nb and B atoms results in a significantly stretched N2 molecule. The weakened NN triple bonds are easier to be broken for a biased NH3 production. The diatomic catalysis is a future approach for NRR as it shows a special N2 adsorption mode that can be well engineered.  相似文献   

3.
It is an important issue that exposed active nitrogen atoms (e.g., edge or amino N atoms) in graphitic carbon nitride (g‐C3N4) could participate in ammonia (NH3) synthesis during the photocatalytic nitrogen reduction reaction (NRR). Herein, the experimental results in this work demonstrate that the exposed active N atoms in g‐C3N4 nanosheets can indeed be hydrogenated and contribute to NH3 synthesis during the visible‐light photocatalytic NRR. However, these exposed N atoms can be firmly stabilized through forming B? N? C coordination by means of B‐doping in g‐C3N4 nanosheets (BCN) with a B‐doping content of 13.8 wt%. Moreover, the formed B? N? C coordination in g‐C3N4 not only effectively enhances the visible‐light harvesting and suppresses the recombination of photogenerated carriers in g‐C3N4, but also acts as the catalytic active site for N2 adsorption, activation, and hydrogenation. Consequently, the as‐synthesized BCN exhibits high visible‐light‐driven photocatalytic NRR activity, affording an NH3 yield rate of 313.9 µmol g?1 h?1, nearly 10 times of that for pristine g‐C3N4. This work would be helpful for designing and developing high‐efficiency metal‐free NRR catalysts for visible‐light‐driven photocatalytic NH3 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号