首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
运用爆炸相似理论,在无限空间中炸药爆炸冲击波的超压规律基础上,考虑瓦斯浓度、巷道截面积、冲击波传播距离、混合物体积等因素,建立了煤矿掘进巷道内瓦斯爆炸冲击波的超压预测模型。根据一定的实验数据,拟合出超压与瓦斯浓度、冲击波传播距离,以及与瓦斯—空气混合物体积之间的关系。通过实例对该模型进行验证,结果表明模型预测数据与实验数据比较吻合。  相似文献   

2.
运用爆炸相似理论,在无限空间中炸药爆炸冲击波的超压规律基础上,考虑瓦斯浓度、巷道截面积、冲击波传播距离、混合物体积等因素,建立了煤矿掘进巷道内瓦斯爆炸冲击波的超压预测模型。根据一定的实验数据,拟合出超压与瓦斯浓度、冲击波传播距离,以及与瓦斯—空气混合物体积之间的关系。通过实例对该模型进行验证,结果表明模型预测数据与实验数据比较吻合。  相似文献   

3.
爆炸空气冲击波的研究是弹药等武器作战效能评估的重要依据,也是对矿井爆炸事故的系统安全性进行分析的基础。爆炸空气冲击波在通过巷道转弯处时,受到巷道壁面的约束而产生反射及叠加,形成冲击波紊流区,将打乱了冲击波能量在巷道内的分布,而后会在传播一定距离后恢复为“平面波”。利用LS-DYNA数值模拟计算程序,对某一弱冲击波通过不同角度的转弯巷道的情况行了数值模拟,找寻转弯巷道之后的冲击波紊流区的规律及特点。通过对数值模拟结果的研究分析,采用超压比准则及冲量比准则重新量化定义了“平面波”;研究结果表明,冲量准则能更好的定义“平面波”,在转弯角后5倍巷道直径的距离冲击波确定恢复为平面波,在20°、45°、90°、135°四种情况下冲击波的冲量衰减系数分别为0.993 7、0.955 9、0.911 5、0.816 7,紊流区内的最大峰值超压可根据文中的拟合公式进行估算。  相似文献   

4.
基于燃烧理论、爆炸理论及遵守的守恒定律,建立了巷道内瓦斯爆炸的数学物理模型.利用Fluent软件对煤矿巷道内预混瓦斯气体的燃烧爆炸进行了分析和模拟研究,得到了巷道内瓦斯爆炸过程中超压变化规律.展现了爆炸冲击波在巷道内的衰减过程.将数值模拟结果与实验结果进行对比分析,数据高度吻合,证明了数值模拟的合理性,进而为煤矿瓦斯爆炸传播过程的分析研究及瓦斯爆炸事故的防范提供了一定的参考,也为优化矿用救生舱、避难硐室的设计参数提供了理论依据.  相似文献   

5.
《煤矿安全》2013,(4):1-5
煤矿瓦斯爆炸极具破坏性,抑防瓦斯爆炸对煤矿安全生产的重要性不言而喻。利用一些基本假设,对瓦斯爆炸产生的冲击波的传播规律进行了分析研究。推导出强、弱冲击波传播过程中波阵面参数之间的关系式。同时,推导出瓦斯爆炸过程中形成的柱面冲击波超压等参数随距离传播和衰减规律。通过理论计算数据和数值模拟数据对比研究和对照分析,总体上数据之间的吻合程度较好。  相似文献   

6.
为研究独头巷道内不同长度瓦斯积聚区的爆炸特征,运用计算流体力学软件FLACS进行了数值模拟,对比了瓦斯爆炸超压及正压冲量等参数及其在巷道内的分布情况,分析了瓦斯积聚范围对爆炸冲击波破坏特征的影响规律,研究了独头巷道内不同长度瓦斯积聚区爆炸冲击波与火焰相互作用的特点。研究结果表明:随着独头巷道内瓦斯积聚范围的增大,爆炸冲击波破坏特征会发生突变,最大爆炸压力阶梯式增大,瓦斯积聚范围超过某一临界值后,最大爆炸压力出现位置从巷道封闭端向开放端转移;最大爆炸冲量先单调增加而后趋于稳定,最大爆炸冲量位置始终处在巷道封闭端;回传稀疏波对火焰的加速作用是导致巷道近开放端爆炸超压突增的主要原因。  相似文献   

7.
为了掌握管道内瓦斯爆炸冲击作用特性,利用ANSYS/LS-DYNA对浓度为9.5%,填充长度为5 m的瓦斯在管道内爆炸产生冲击作用进行了数值模拟,分析了耦合效应对管道内瓦斯爆炸流场和冲击波超压的影响.研究结果表明:瓦斯爆炸瞬间,管道内坐标分别为A(0,0,2),B(0,0,4)测点的压力瞬间达到峰值,之后测点A,B的压力逐渐减小直至趋近于某一稳定值.而初始压力为大气压的测点C(0,0,6),D(0,0,8),E(0,0,10)依次达到超压峰值后逐渐地衰减趋近于大气压力.因此,在耦合和解耦合的2种情况下,不同测点的超压时程曲线走势基本一致.在解耦合条件下,管道轴向同心环等压线以均匀圆环的形式向开口方向传播;在耦合条件下,管道轴向同心环等压线以紊乱的等压线分布形式向开口端传播.因此,瓦斯爆炸流固耦合效应对冲击波等压线的分布有一定的影响,即改变流场分布.  相似文献   

8.
为研究在巷道空间里瓦斯爆炸冲击波的传播特性,采用ANSYS/LS-DYNA程序的流固耦合算法,建立巷道瓦斯爆炸物理模型,对巷道空间里瓦斯爆炸过程进行数值模拟,得到瓦斯爆炸过程中冲击波变化云图,并拟合了冲击波衰减变化规律.研究表明:瓦斯爆炸冲击波经历了从球面到平面冲击波的发展过程,最终冲击波逐渐衰减为常压状态,但在受限空间内瓦斯爆炸冲击波遇壁面会发生反射与叠加,因此要合理的设置泄压口;爆炸冲击波超压与距离成非线性关系,即爆炸冲击波超压与距离的平方根成反比.研究结果对瓦斯爆炸传播事故的预防和灾害控制有一定的指导作用.  相似文献   

9.
通过对空气中冲击波超压峰值的理论分析,基于TNT当量法对煤矿巷道内瓦斯爆炸超压数据进行研究,建立了煤矿巷道内瓦斯爆炸超压预测模型,并通过与实验测量值的比较,对模型进行了修正,该预测模型可以为矿井安全设施设计、事故灾害程度评估、安全设施审查提供理论依据.  相似文献   

10.
煤矿瓦斯爆炸冲击波衰减规律研究与应用   总被引:6,自引:1,他引:5       下载免费PDF全文
基于弱冲击波理论,根据瓦斯爆炸释放的能量,推导出爆炸冲击波传播过程中超压与爆源点距离之间的衰减关系,得到冲击波参数随传播距离的衰减规律以及冲击波传播距离和时间存在的非线性关系.全尺寸实验与理论计算的对比结果表明,理论数据与实验结果基本吻合,证明了冲击波超压随距离衰减公式的合理性.应用研究结果分析了瓦斯爆炸后冲击波影响范围,认为小型瓦斯爆炸只是破坏局部通风系统,而大型瓦斯爆炸,或者瓦斯爆炸过程中有煤尘等参与会造成极大的灾害.  相似文献   

11.
为了研究巷道断面突变对突出冲击波传播的影响和冲击波超压冲量的破坏作用,利用自行搭建的煤与瓦斯突出冲击波传播实验系统,结合三维变截面巷道冲击波传播数值模型的建立,基于实验室实验和数值模拟的方法,研究了不同初始瓦斯压力下突出冲击波在断面突变巷道中的传播规律。结果表明:突出后巷道内压力变化可划分为冲击扰动初始阶段和压力衰减阶段,其中冲击扰动初始阶段冲击波超压峰值大于压力衰减阶段压力峰值,且前者超压冲量小于后者;以初始压力为0.6 MPa为例,计算得出压力衰减阶段超压冲量比冲击扰动初始阶段高52.4%,总冲量随冲击波传播呈先衰减后增大的规律;突出发生后,冲击波超压先随距离发生衰减,当冲击波从断面突变前的大直径巷道传入后方小直径巷道,因壁面反射形成局部高压区,超压强度在截面前0.65 m处增大,出现先衰减后增大的变化规律。  相似文献   

12.
侯玮  曲志明  骈龙江 《煤炭学报》2009,34(4):509-513
在应用一些基本假设的基础上,建立了瓦斯爆炸冲击波在转弯巷道内传播的物理模型和数值模型.数值模拟的结果表明,转弯巷道内传播的冲击波,其压力、速度和温度等参数在传播过程中存在着衰减态势.在瓦斯爆炸初期,由于化学反应的存在而使冲击波波阵面上的参数不断增加;而在全部瓦斯混合气体反应结束后,压力、速度和温度的衰减较慢.通过实验数据、模拟数据和实测数据的对比表明数据的吻合程度较高,证明了数值模型的可行性.  相似文献   

13.
张德乾 《中州煤炭》2016,(10):43-45,132
为研究采煤工作面上隅角瓦斯爆炸在采面联巷内的传播特征,采用U型并联管道系统模拟爆炸在实际巷道内的传播。结果表明,上隅角瓦斯爆炸冲击波在采煤工作面不规则巷道中传播时,爆炸冲击波和火焰陡然变化,出现爆轰;进、回风巷内冲击波进入上下山巷道出现叠加;冲击波经过进风巷与回风巷传播特征存在较大差异,冲击波在回风巷内属燃烧爆炸传播,而在进风巷内属一般空气区传播,上下山巷道及工作面属爆炸破坏较严重区域,应强化预防措施,减少瓦斯爆炸带来的损失。  相似文献   

14.
煤与瓦斯突出产生的冲击气流有很强的破坏效应,首先分析了突出冲击气流的形成原因;然后建立了直巷道的几何结构模型,设定相应的初始条件与相关参数,对突出冲击气流的运动过程进行了数值模拟计算,得出了不同时刻的冲击气流压力、速度以及瓦斯相对质量浓度在巷道内的分布情况,同时分析突出发生区域出口断面处的冲击气流平均压力和速度随时间变化过程,并根据模拟结果得出定性与定量化的结论;最后,构建了煤与瓦斯突出在直巷中传播的实验系统,通过实验的手段分析了冲击波在直巷中衰减规律。研究结果表明,突出能在巷道空间内形成较高速度运动的冲击气流及冲击波;与突出区域原始瓦斯压力相比,冲击气流压力发生了急剧下降;冲击气流强度在断面不变的直巷道中传播会发生衰减,前期超压衰减较为缓慢,后期超压衰减增快。  相似文献   

15.
王凯  周爱桃  魏高举  张品 《煤炭学报》2012,37(6):989-993
为了分析巷道截面积变化对煤与瓦斯突出冲击波传播的影响,首先利用流体力学、空气动力学理论建立了突出冲击波在变截面巷道中传播的数学模型,理论分析得出了冲击波衰减与截面积变化率之间的变化规律;其次构建了变截面巷道冲击波传播的实验系统,研究了冲击波在变截面巷道中传播规律,实验研究表明突出冲击波由大截面巷道传到小截面巷道时,冲击波超压变大,波阵面的单位能量是增大的;然后建立了冲击波在变截面巷道中传播的数值计算模型,数值计算结果表明冲击波初始超压越大,冲击波衰减越快,且巷道截面积变化率越大,冲击波衰减系数也越大;最后通过对比分析,表明理论分析、实验研究以及数值计算的结果是一致的。  相似文献   

16.
为了研究管道预混火焰的传播特性及内在机理,运用数值模拟的方法,建立矿井瓦斯气体爆炸的数学模型和物理模型,对不同当量比浓度的矿井瓦斯气体爆炸过程进行模拟研究。计算结果表明,矿井瓦斯气体爆炸过程中速度和压力值均会经历上升-下降-二次波峰-下降-震荡的过程。火焰传播初期,气体爆燃体积迅速增大,火焰的速度、压力和温度随之迅速上升,并在一段时间内呈现层流燃烧状态。而后速度和压力图均出现了不同程度的波动,可知这是压力波和反射波共同作用的结果。速度和压力并未同时达到峰值,速度要超前于压力达到最大状态,这主要是爆炸压力波和反射压力波的相互叠加作用导致压力上升,而反射压力波导致速度下降。当量比浓度的压力、速度值最小,燃烧持续时间最长,此时气体还未完全加速,未形成爆轰状态。  相似文献   

17.
瓦斯爆炸数值模拟研究   总被引:2,自引:1,他引:1  
对瓦斯爆炸传播进行了理论分析,并借助通用CFD软件模拟了点火源球形压力波的传播过程以及压力波的反射与相交;模拟了直管道以及变截面管道压力波传播过程。发现在压力波的相交处会出现局部高压,而压力波的不断叠加使弱压缩波成为激波。前驱冲击波会随着不断传播而逐渐衰竭,当火焰阵面追上前驱冲击波阵面达到同步时,会形成爆轰波,而爆轰波的压力值与传播速度均有大幅提高。还验证了在截面积突然缩小时,火焰传播的最大速度不在截面突然缩小处,而是向后推移了一段距离;这是因为最大湍流度不是在截面突然缩小处,而是向后推移至某一断面,这也反映了湍流对瓦斯爆炸传播的影响。通过数值模拟也发现通用CFD软件在计算爆炸场时,其收敛性与稳定性方面仍然有待提高。  相似文献   

18.
在应用一些基本假设的基础上,建立了瓦斯爆炸冲击波在转弯巷道内传播的物理模型和数值模型.数值模拟的结果表明,转弯巷道内传播的冲击波,其压力、速度和温度等参数在传播过程中存在着衰减态势.在瓦斯爆炸初期,由于化学反应的存在而使冲击波波阵面上的参数不断增加;而在全部瓦斯混合气体反应结束后,压力、速度和温度的衰减较慢.通过实验数据、模拟数据和实测数据的对比表明数据的吻合程度较高,证明了数值模型的可行性.  相似文献   

19.
煤粉粒径对突出瓦斯-煤粉动力特征的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
王凯  王亮  杜锋  张翔  娄振  辛程鹏  崔心源 《煤炭学报》2019,44(5):1369-1377
为进一步研究煤与瓦斯突出机理以及突出煤粉粒径对突出瓦斯-煤粉动力特征影响机制,研制了突出粉煤-瓦斯两相流模拟试验系统。设置的管内安装传感器可用于同时测量突出气体冲击力以及运动煤粉对传感器的打击。煤粉在试验巷道内的动态传播特征可由传感器受到的打击情况进行分析。另外,针对目前纹影仪无法观察圆形管道内流场的问题,从纹影效果失效的原理出发,设计了一种用于观察圆形管道内流场的纹影系统直接研究突出激波波阵面的传播。利用试验系统进行4种煤粉粒径的突出试验,重点观测了突出气流冲击力、激波波阵面传播、煤粉冲击等参数。研究结果表明:气流冲击波速度远大于煤粉运动速度,在试验巷道中的突出气流冲击波在时间上会先于煤粉到达试验巷道的任何位置,气流冲击波到达传感器之后压力会在极短的时间内达到最大值,峰值压力能够保持0. 01 s左右。气体冲击力随着煤粉粒径目数的增加而增加,试验中4种粒径下气体冲击力平均依次增加10. 9%,11. 4%,7. 6%。气体冲击力在巷道内传播先增强后衰减,粒径80~200目情况下,2. 27,4. 27,6. 27和8. 27 m处传感器冲击波强度依次增强13. 6%、衰减13. 4%、衰减20. 6%。随着距离的增加煤粉对传感器的打击力呈明显的减弱趋势。煤粉运动速度随着煤粉粒径目数的增加而增加,试验中4种粒径下,试验巷道内煤粉平均速度分别为34. 4,37. 3,39. 1,41. 7 m平均速度依次增加31. 4%、减小12. 2%、减小13. 1%。纹影系统可观测到突出激波波阵面,激波波阵面垂直于试验管道轴线向突出方向高速运动。纹影计算得到波阵面的传播速度与理论间接计算值具有很好的一致性。  相似文献   

20.
瓦斯输送管道爆炸自动喷粉抑爆技术   总被引:3,自引:0,他引:3  
通过论述自动喷粉抑爆技术原理及构成,分析总结瓦斯管道爆炸传播规律,得出自动喷粉抑爆技术抑爆效果主要取决于装备相应时间、干粉浓度粒度及NH4H2PO4质量分数。在DN500爆炸试验管道进行瓦斯管道爆炸传播试验和抑爆试验研究自动喷粉抑爆装置抑爆效果,抑爆器动作后,爆炸火焰在抑爆器后3.5 m内被扑灭,爆炸冲击波在爆炸火焰被扑灭后,不断衰减,最终消失。试验表明:自动喷粉抑爆技术能够有效的抑制瓦斯爆炸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号