首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Poroelasticity theory has become an effective and accurate approach to analyzing the intricate mechanical behavior of a porous medium containing two immiscible fluids, a system encountered in many subsurface engineering applications. However, the resulting partial differential equations in the theory intrinsically take on a coupled form in the terms pertinent to inertial drag, viscous damping, and applied stress, making it difficult to obtain closed-form, steady-state analytical solutions to boundary-value problems except in special cases. In the present paper, we demonstrate that, for dilatational wave excitations, these partial differential equations can be decoupled analytically into three Helmholtz equations featuring complex-valued, frequency-dependent normal coordinates that correspond physically to three independent modes of dilatational wave motion. The normal coordinates in turn can be expressed in the frequency domain as three different linear combinations of the solid dilatation and the linearized increment of fluid content for each pore fluid, or equivalently, as three different linear combinations of total dilatational stress and two pore fluid pressures. These representations are applicable to strain-controlled and stress-prescribed boundary conditions, respectively. Numerical calculations confirm that the phase speed and attenuation coefficient of the three dilatational waves represented by the Helmholtz equations are exactly identical to those obtained previously by numerical solution of the dispersion relations for dilatational wave excitation of a porous medium containing two immiscible fluids. Thus, dilatational wave motions in unsaturated porous media subject to suitable boundary conditions can now be accurately modeled analytically.  相似文献   

2.
Wave propagation in a uniformly rotating elastic solid is discussed based on displacement equations in a moving frame. The time-harmonic Green’s dyadic for a point body force is obtained in closed form. It is reconfirmed that two quasi dilatational and shear waves are coupled to each other, and the deformation decomposition into the dilatation and rotation is not possible for the rotating solid. Further, it is also confirmed that the velocity of the Rayleigh surface wave depends not only on the rotational velocity but also on its direction and that the Rayleigh wave vanishes when the rotational velocity approaches the Rayleigh wave velocity of the immovable solid.  相似文献   

3.
In terms of the mixture theory and phase field theory, a phase field model is developed for the saturated porous medium undergoing phase transition. In the proposed model, it is postulated that during the phase transition of the porous medium, both the solid skeleton and pore fluid will undergo phase transition. The phase states of the solid skeleton and pore fluid are characterized by respective order parameters. To simplify the proposed phase field model, the temperatures and order parameters of the solid skeleton and pore fluid are assumed to be equal. The balance laws of the porous medium are given by the conventional mixture theory. The order parameter and the porosity of the porous medium are considered as internal variables and their evolution equations are determined by the entropy inequality of the porous medium. The constitutive representations for the stresses, entropies, heat fluxes, drag force and the evolution equations for the order parameter and porosity are derived by exploitation of the entropy inequality. To illustrate the proposed model, a concrete phase field model for the freezing porous medium is established in the paper. In the model, the memory effect associated with phase transition of the porous medium is taken into account by assuming Stieltjes integral for the strain energy of the porous medium. The constitutive representations for the above variables are then derived according to the proposed free energy expression for the porous medium. Finally, the boundary condition associated with the proposed model and the determination of some parameters involved in our model are discussed in the paper briefly.  相似文献   

4.
Summary The propagation of acceleration waves in a fluid-saturated porous medium is considered. The two-phase medium is the system consisting of a porous elastic solid skeleton, filled with a viscous compressible fluid. Two types of the media are taken into account: the medium composed of definite conductors and the medium composed of non-conductors. The method of singular surfaces has been used in these considerations. The acceleration waves in the medium consisting of non-conductors are not homentropic, in general. In this paper the conditions are determined which must be fulfilled to satisfy the acceleration waves to be homentropic.The propagation conditions of the waves are formulated and analysed. As usual in such a two-phase medium two longitudinal waves and one transverse wave are propagated. The growth equations of homothermal and homentropic waves are derived, and their solutions are analysed.  相似文献   

5.
In this paper, a coupled hydro-mechanical formulation is developed for deformable porous media subjected to crack interfaces in the framework of extended finite element method. Governing equations of the porous medium consist of the momentum balance of the bulk together with the momentum balance and continuity equations of the fluid phase, known as formulation. The discontinuity in fractured porous medium is modeled for both opening and closing modes that results in the fluid flow within the fracture, and/or contact behavior at the crack edges. The fluid flow through the fracture is assumed to be viscous and is modeled by employing the Darcy law in which the permeability of fracture is obtained using the cubic law. The contact condition in fractured porous medium is handled by taking the advantage from two different algorithms of LATIN method and penalty algorithm. The effect of contact on fluid phase is employed by considering no leak-off from/into the porous medium. The nonlinearity of coupled equations produced due to opening and closing modes is carried out using an iterative algorithm in the Newton–Raphson procedure. Finally, several numerical examples are solved to illustrate the performance of proposed X-FEM method for hydro-mechanical behavior of fractured porous media with opening and closing modes.  相似文献   

6.
A fluid-saturated, elastic, porous media model is used to describe acoustic wave propagation in snow. This model predicts the existence of two dilatational waves and a shear wave. In homogeneous, isotropic snow the two dilatational waves are uncoupled from one another but involve coupled motion between the interstitial air and ice skeleton. Dilatational waves of the first kind and shear waves are slightly dispersive and attenuated with distance. Dilatational waves of the second kind are strongly dispersive and highly attenuated. The model also predicts that the wave impedance for snow is close to that of air and that snow strongly absorbs acoustic wave energy.Available experimental phase velocity, impedance and attenuation data support the calculated results. Phase velocity measurements indicate three identifiable categories: fast dilatational waves (phase velocity ? 500 m/s), slow dilatational waves (phase velocity < 500 m/s) and shear waves. Wave impedance and attenuation measurements illustrate the low impedance, highly absorbing characteristics of snow. Additional impedance, attenuation and phase velocity data are required to further test and improve the model.  相似文献   

7.
A model of fluid‐saturated poroelastic medium was developed based on a combination of the discrete element method and grid method. The developed model adequately accounts for the deformation, fracture, and multiscale internal structure of a porous solid skeleton. The multiscale porous structure is taken into account implicitly by assigning the porosity and permeability values for the enclosing skeleton, which determine the rate of filtration of a fluid. Macroscopic pores and voids are taken into account explicitly by specifying the computational domain geometry. The relationship between the stress–strain state of the solid skeleton and pore fluid pressure is described in the approximations of simply deformable discrete element and Biot's model of poroelasticity. The developed model was applied to study the mechanical response of fluid‐saturated samples of brittle material. Based on simulation results, we constructed a generalized logistic dependence of uniaxial compressive strength on loading rate, mechanical properties of fluid and enclosing skeleton, and on sample dimensions. The logistic form of the generalized dependence of strength of fluid‐saturated elastic–brittle porous materials is due to the competition of two interrelated processes, such as pore fluid pressure increase under solid skeleton compression and fluid outflow from the enclosing skeleton to the environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Mohan D. Sharma 《Acta Mechanica》2009,208(3-4):269-280
In anisotropic fluid-saturated porous solids, four waves can propagate along a general phase direction. However, solid particles in different waves may not vibrate in mutually orthogonal directions. In the propagation of each of these waves, the displacement of pore–fluid particles may not be parallel to that of solid particles. The polarization for a wave is the direction of aggregate displacement of the particles of the two constituents of a porous aggregate. These polarizations, for different waves, are not mutually orthogonal. Out of the four waves in anisotropic poroelastic medium, two are termed as quasi-longitudinal waves. The prefix ‘quasi’ refers to their polarization being nearly, but not exactly, parallel to the direction of propagation. The existence of purely longitudinal waves in an anisotropic poroelastic medium is ensured by the stationary characters of two expressions. These expressions involve the elastic (stiffness and coupling) coefficients of a porous aggregate and the components of phase direction. Necessary and sufficient conditions for the existence of longitudinal waves are discussed for different anisotropic symmetries. Conditions are also discussed for the existence of the apparent longitudinal waves, i.e., the propagation of wave motion with the particle displacement parallel to the ray direction instead of the phase direction. A graphical solution of a numerical example is shown to check the existence of these apparent longitudinal waves for general directions of phase propagation.  相似文献   

9.
In this paper we give a detailed account, within the framework of the linear theory of thermoelasticity, of the propagation of surfaces of discontinuity in a homogeneous, isotropic elastic solid which is able to conduct heat. The methods used in the investigation are, in large measure, due to T. Y. Thomas. The early sections of the paper contain a derivation of the principal results of Thomas's theory which enables us to determine, from a consideration of the appropriate Cauchy initial-value problem, the characteristic surfaces of the linear thermoelastic equations. The wavefronts associated with these characteristics are found to propagate with one of the constant speeds
, 0, ET, vT being respectively the density, the isothermal Young's modulus and the isothermal Poisson's ratio of the material in its reference state.

A discontinuity surface of order r in the displacement and temperature fields is referred to as a weak thermoelastic wave if r2 and a strong thermoelastic wave if r=0 or 1. Concerning the properties of these waves our main conclusions are as follows. Weak thermoelastic waves and strong waves of order 1 are characteristic and may be described as dilatational or rotational according as their speed of propagation is vT or vS. Dilatational strong waves of order 1 are shock waves and rotational waves of this type are propagating vortex sheets. For all thermoelastic waves of order 1 the strength (defined in a natural way) is completely determined by its distribution on an initial configuration of the wavefront. Irrespective of the shape of this initial configuration, the strength of a dilatational wave decays rapidly as the wave propagates on account of thermoelastic dissipation. For rotational waves, however, the variation of strength during propagation depends solely upon the geometrical form of the initial wavefront. A strong thermoelastic wave of order 0 is an absolute singular surface in the temperature field, discontinuities of displacement being excluded from consideration. A wave of this type may be characteristic, in which case its speed of propagation is vS; or it may be non-characteristic, in which case it is a dilatational shock wave. In neither case is the strength of the wave completely determined by its distribution on an initial wavefront, a situation which leads us to argue that thermoelastie waves of order 0 cannot in practice be created.

In the final section of the paper the properties of singular surfaces in classical elastokinetics are discussed in the light of the foregoing analysis of discontinuous thermoelastic waves.  相似文献   


10.
A two‐scale numerical model is developed for fluid flow in fractured, deforming porous media. At the microscale the flow in the cavity of a fracture is modelled as a viscous fluid. From the micromechanics of the flow in the cavity, coupling equations are derived for the momentum and the mass couplings to the equations for a fluid‐saturated porous medium, which are assumed to hold on the macroscopic scale. The finite element equations are derived for this two‐scale approach and integrated over time. By exploiting the partition‐of‐unity property of the finite element shape functions, the position and direction of the fractures is independent from the underlying discretization. The resulting discrete equations are non‐linear due to the non‐linearity of the coupling terms. A consistent linearization is given for use within a Newton–Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach, and show that faults in a deforming porous medium can have a significant effect on the local as well as on the overall flow and deformation patterns. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Oblique wave interaction with rectangular porous structures of various configurations in two-layer fluid are analyzed in finite water depth. Wave characteristics within the porous structure are analyzed based on plane wave approximation. Oblique wave scattering by a porous structure of finite width and wave trapping by a porous structure near a wall are studied under small amplitude wave theory. The effectiveness of three types of porous structures—a semi-infinite porous structure, a finite porous structure backed by a rigid wall, and a porous structure with perforated front and rigid back walls—in reflecting and dissipating wave energy are analyzed. The reflection and transmission coefficients for waves in surface and internal modes and the hydrodynamic forces on porous structures of the aforementioned configurations are computed for various physical parameters in two-layer fluid. The eigenfunction expansion method is used to deal with waves past the porous structure in two-layer fluid assuming the associated eigenvalues are distinct. An alternate procedure based on the Green’s function technique is highlighted to deal with cases where the roots of the dispersion relation in the porous medium coalesce. Long wave equations are derived and the dispersion relation is compared with that derived based on small amplitude wave theory. The present study will be of significant importance in the design of various types of coastal structures used in the marine environment for the reflection and dissipation of wave energy.  相似文献   

12.
A stabilized equal‐order velocity–pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume‐averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline‐upwind/Petrov–Galerkin), PSPG (pressure stabilizing/Petrov–Galerkin) and DSPG (Darcy stabilizing/Petrov–Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG‐based finite element method is employed. The developed algorithms were tested extensively with bilinear elements and were shown to perform stably and with nearly quadratic convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural and double diffusive convection in porous media and in the directional solidification of a binary‐alloy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
为了研究超声波在流体-孔隙介质周期性粗糙界面的传播特性,文章基于周期性锯齿粗糙界面的衍射模型分析孔隙介质开孔与闭孔状态下孔隙度对反射与透射的影响。通过孔隙介质比奥特(Biot)理论与光栅方程理论,得到包含各阶反射系数、透射系数的线性方程组,再利用傅里叶变换进行数值计算,得到孔隙度与流体-孔隙介质周期性粗糙界面反射系数、透射系数之间的关系。结果表明,由于界面的周期性,频率对反射与透射系数的影响没有呈现一定的规律。但孔隙度对反射与透射系数有显著影响,且由于孔隙介质状态的差异性,导致反射与透射系数在开孔与闭孔时变化趋势不同。  相似文献   

14.
A new methodology is proposed for the topology optimization of fluid in Stokes flow. The binary design variable and no‐slip condition along the solid–fluid interface are regularized to allow for the use of continuous mathematical programming techniques. The regularization is achieved by treating the solid phase of the topology as a porous medium with flow governed by Darcy's law. Fluid flow throughout the design domain is then expressed as a single system of equations created by combining and scaling the Stokes and Darcy equations. The mixed formulation of the new Darcy–Stokes system is solved numerically using existing stabilized finite element methods for the individual flow problems. Convergence to the no‐slip condition is demonstrated by assigning a low permeability to solid phase and results suggest that auxiliary boundary conditions along the solid–fluid interface are not needed. The optimization objective considered is to minimize dissipated power and the technique is used to solve examples previously examined in literature. The advantages of the Darcy–Stokes approach include that it uses existing stabilization techniques to solve the finite element problem, it produces 0–1 (void–solid) topologies (i.e. there are no regions of artificial material), and that it can potentially be used to optimize the layout of a microscopically porous material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

This paper is concerned with formulating equations for the flow of an electrically conducting fluid through a non‐conducting porous medium with non‐porous and non‐conducting boundaries. Equations are developed for the general case of the flow of a solid‐fluid suspensions; flow through a porous medium is treated as a special case by letting the velocity of the particle phase goes to zero. Two cases are considered. Exact solution is obtained for the case of flow between parallel plates, but for flow in pipes of square and circular cross sections, the equations have to be solved numerically. The numerical technique developed can treat elliptical cross sections as well. The flow in all cases is assumed to be steady, laminar, incompressible, viscous, and fully developed. The results are presented in terms of a parameter which measures the resistance of the porous medium.  相似文献   

16.
Open cell porous metals are excellent electrode materials due to their unique electrochemical properties. However, very little research has been conducted to date on the mass transport of porous metals manufactured by the space holder methods, which have distinctive porous structures. This paper measures the mass transfer coefficient of porous nickel manufactured by the Lost Carbonate Sintering process. For porous nickel samples with a porosity of 0.55–0.75 and a pore size of 250–1500 μm measured at an electrolyte flow velocity of 1–12 cm s?1, the mass transfer coefficient is in the range of 0.0007–0.014 cm s?1, which is up to seven times higher than that of a solid nickel plate electrode. The mass transfer coefficient increases with pore size but decreases with porosity. The porous nickel has Sherwood numbers considerably higher than the other nickel electrodes reported in the literature, due to its high real surface area and its tortuous porous structure, which promotes turbulent flow.
  相似文献   

17.
Using micropolar generalized thermoviscoelastic theories, problems of reflection and refraction of magneto-thermoeviscoelastic waves at the interface between two viscoelastic media are studied when a uniform magnetic field permeates the media. Coefficient ratios of reflection and refraction are obtained using continuous boundary conditions. Some special cases are considered, i.e., the absence of micropolar and viscous effects. By numerical calculations, variations of the amplitude ratios of reflection and refraction coefficients with the angle of incidence are shown graphically for incident rotational and dilatational waves at the interface between two media (one medium is aluminium-epoxy micropolar iscoelastic material, and the other is magnesium crystal micropolar viscoelastic material). Comparing the generalized thermoelastic theories developed by Lord and Shulman (LS) and by Green and Lindsay (GL) in this paper to conventional dynamics (CD) theory the effects of a magnetic field and viscosity are shown numerically in this paper.  相似文献   

18.
A two-scale model is developed for fluid flow in a deforming, unsaturated and progressively fracturing porous medium. At the microscale, the flow in the cohesive crack is modelled using Darcy’s relation for fluid flow in a porous medium, taking into account changes in the permeability due to the progressive damage evolution inside the cohesive zone. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for an unsaturated porous medium, which are assumed to hold on the macroscopic scale. The finite element equations are derived for this two-scale approach and integrated over time. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton–Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach. The calculations indicate that the evolving cohesive cracks can have a significant influence on the fluid flow and vice versa.  相似文献   

19.
G. Ahmadi 《Acta Mechanica》1982,44(3-4):299-317
Summary A continuum theory of a two phase solid-fluid media is formulated. The basic balance laws for the solid phase as well as for the fluid phase are presented. Based on thermodynamical consideration a set of constitutive equations are derived and the basic equations of motions of the distributed solid and fluid continua are obtained and discussed. It is shown that the theory contains as its special cases, Mohr-Coulomb criterion of limiting equilibrium of granular materials, Saffman theory of dusty gas, as well as Darcy's law of flow through porous media. It is then concluded that the present theory covers the full spectrum of two phase solid-fluid media from low porosity granular media with Darcy's law of fluid motion to low and high concentration two phase flows such as dusty gas and blood flow.  相似文献   

20.
The onset of thermal natural convection in a horizontal multilayer system consisting of a homogeneous porous layer sandwiched between two fluid layers has been simulated by an accurate numerical method. The porous and fluid layers include uniform heat sources. Flow in the porous medium has been governed by Darcy–Brinkman’s law. On the other hand, the Navier–Stokes equations with the Boussinesq approximation have ruled over the clear fluid layers. The lower and upper rigid surfaces are assumed to be fixed at the equal temperatures T L and T U. The eigenvalues and eigenfunctions of the linear stability analysis have been solved by utilizing the compound matrix method (CMM). The CMM reaches accurate results in a very efficient manner. Moreover, the method removes the stiffness from the equations of the stability system. The results indicate that the onset of convection and the nature of convection cells depend on the relative depths of layers. It has been observed that the thickness of the lower fluid layer increases the critical Rayleigh number of the upper fluid layer and stabilizes it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号