首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
以气动涡轮支承结构静压径向气体轴承为研究对象,建立静压径向气体轴承的微分模型,利用工程数值方法计算轴承承载力、刚度和气体质量流量,运用正交试验法研究节流器参数对轴承性能的影响,以及不同优化方向下轴承的综合性能。结果表明:不同的优化方向节流器参数的敏感性不同,以气体质量流量为优化方向明显不符合设计需要,以承载力为优化方向得到的轴承综合性能最好;平均气膜厚度、节流孔直径和数量是影响轴承承载特性的主要因素,节流孔直径越小承载性能越好。  相似文献   

2.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

3.
传统固有孔节流静压气体止推轴承研究的理论基础均建立在节流孔直径远大于气膜间隙的前提下,为了探究与气膜间隙同一数量级的微孔节流器静压气体止推轴承的静态性能,建立微孔节流静压气体止推轴承模型,通过CFD软件进行三维仿真,分析不同气膜间隙、孔径、供气压力对轴承静态特性的影响,并与环面节流器静压气体止推轴承进行对比。结果表明:无论是微孔节流器还是环面节流器,在节流孔出口处均有压降出现,但微孔节流器相对于环面节流器在节流孔出口边缘处速度和压力变化较为平缓;随着气膜间隙的增大轴承承载力减小,随着微孔节流器孔径减小轴承刚度增大,相同孔径下供气压力越大轴承承载力和刚度越大。  相似文献   

4.
为进一步提升静压气体轴承的静态性能,以普通孔式节流为基础,配合表面周向和径向槽节流,提出复合节流式静压气体轴承,以充分发挥2种节流方式的优点,使静压气体轴承具有更好的承载能力和刚度。利用Fluent计算轴承内流场参数并分析流场特性,比较复合节流式与普通孔式节流静压气体轴承的承载能力和刚度,并研究孔式参数和表面槽参数对复合节流式静压气体轴承静态特性的影响。结果表明:在一定气膜厚度范围内,复合节流式静压气体轴承对于提升承载力、增强刚度有着显著的效果;复合式节流因为有表面槽二次节流的存在,均压效果更好。增加节流孔数、节流孔直径、节流孔分布圆半径,以及在气膜厚度较小时增加表面槽长、槽宽、槽深,均有利于增加轴承承载力;在气膜厚度较小时,增加节流孔数、减小节流孔直径,以及增加表面槽长和槽宽、降低槽深,均有利于增加轴承刚度。  相似文献   

5.
以小孔节流静压气体轴承为研究对象,从节流孔内的流动出发,通过工程假设实现气体轴承的建模与分析,并借助MATLAB编程,采用有限差分法、牛顿迭代法实现对气膜流场二维设计计算,得到轴承的压力分布和承载力,并分析讨论对轴承承载力可能产生影响的因素,包括偏心率、轴承间隙、供气孔直径、环境温度、节流孔个数、供气压力。结果表明:不同参数对承载力影响不同,偏心率、轴承间隙及供气压力对承载力影响较大,增大偏心率、增大供气压力、减小轴承间隙、减小节流孔直径及增加节流孔个数,均会使轴承承载力变大;节流孔直径及每圈节流孔个数因为实际工程限制存在较佳值。  相似文献   

6.
超精密机床主轴一般采用静压气体轴承支承。文章应用大型商业计算流体软件Fluent,并结合MATLAB神经网络拟合工具箱,训练拟合出不同参数与轴承承载力及入流质量流量的映射关系函数,基于此,研究了不同参数对单节流孔圆形静压气体止推轴承静态特性影响的规律。首先,将计算的压力分布与文献中的实验数据进行对比,来验证计算模型与边界的正确性;然后,采用MATLAB神经网络拟合工具箱,训练拟合出轴承半径、节流孔孔径、气膜厚度和外界供气压力与轴承承载力及入流质量流量的映射关系函数;最后,研究了静压气体止推轴承外部供气结构对轴承压力分布的影响;气膜厚度、节流孔直径和供气压力对轴承承载力及入流质量流量的影响。结果表明:外部供气结构对轴承压力没有明显的影响;气膜厚度减少、孔径和外界供气压力的增大会增大轴承的承载力;气膜厚度、孔径和外界供气压力的增大都会增大入流质量流量。  相似文献   

7.
研究偏心率及不同供气压强条件下,气体静压径向轴承节流孔附近的气膜流场特性及承载力变化情况,并通过优化节流孔张角,提高轴承承载力。建立气体静压径向轴承三维模型,划分网格并确立模型的边界条件,采用Fluent软件对轴承内部气膜流场进行仿真计算。计算结果表明,气体静压径向轴承偏心率的增加,会导致区域气膜的压力差增大,从而提高轴承的承载力。轴承承载力同样会随着供气压强的增大而增大,但增幅会随着供气压强的增大而逐渐变小。但当供气压强增加到临界值时,由于节流孔附近激波的出现,将导致承载力随着供气压强的进一步增大而降低。通过改变轴承节流孔张角,可消除轴承气膜内的涡流现象,并改善气膜流场特性,降低能量损失,提高轴承承载力。经过分析对比,发现最优节流孔张角介于50°到60°之间。  相似文献   

8.
邹麒  肖曙红  吴利杰 《轴承》2015,(2):48-52
采用FLUENT软件对不同孔径、不同孔数的微小孔阵列式节流空气静压轴承进行了三维CFD仿真,得到了微小孔阵列式节流空气静压轴承的气膜压力分布和气膜刚度等性能数据。结果表明:当节流器阵列小孔个数和直径不变时,气膜承载力与气膜厚度线性正相关;当气膜厚度不变时,节流器阵列小孔个数或直径增加,气膜承载力和轴承的平均承载力均随之增大,轴承刚度最大点对应的气膜厚度也增大;对比传统单孔节流器和微小孔阵列式节流器轴承的气膜压力分布可知,微小孔阵列式轴承的压力稳定性比传统单孔节流轴承有显著提高。  相似文献   

9.
应用Fluent软件对小孔节流气体静压止推轴承进行了三维流场的模拟计算,分析了节流孔孔径、节流器工作面积、气源供气压力等因素对气体静压轴承性能的影响。结果表明:止推轴承的承载能力随着节流孔直径的增大而增大,在气膜间隙较小时,刚度随着节流孔孔径增大而减小,在气膜间隙较大时,刚度随着节流孔孔径的增大而增大;在保证加工精度的前提下,增大节流器工作面尺寸,以及在保证气源供气连续的前提下,增大气腔供气压力,都可以显著地改善止推轴承的静态性能。在自行研制的实验平台上进行气体静压实验,实验结果与数值模拟计算结果具有较好一致性,证明了将该数值计算方法的可行性。  相似文献   

10.
为提升气体静压止推轴承的静态性能,设计一种新型环形多孔气体静压止推轴承。依据气体润滑原理、采用有限体积法对环形多孔气体静压止推轴承的三维物理模型进行数值模拟,研究节流器上节流孔数量、直径、分布方式和供气压力对气体静压止推轴承静态性能的影响。结果表明:节流孔数量对环形气体静压止推轴承的承载力影响显著,但孔数增加到一定程度后承载力增速放缓;节流孔直径对承载刚度影响较大,随着节流孔直径逐渐减小最佳刚度逐渐增大;节流孔排布方式和供气压力对气体静压止推轴承的静态性能均有明显影响。  相似文献   

11.
王迎  王秋晓  陈安科  刘娜 《机械》2012,39(1):31-34,55
以环形节流孔径向静压气体轴承为研究对象,介绍了静压气体轴承的结构形式和工作原理,对气体润滑理论基础Reynolds方程进行了分析,利用计算流体动力学软件FLUENT对气体轴承的流场进行仿真分析,求解出了轴承气膜的压力分布.在轴承几何参数不变的情况下,分析了承载力与空气质量流量随不同供气压力和偏心率变化关系,并研究了静压气体轴承在高速工作下,动压效应对承载力的影响.  相似文献   

12.
为提高空气静压轴承工作的稳定性,设计一种环形多孔节流空气静压轴承,建立其物理模型,并采用大涡模拟方法对轴承节流孔出口处附近计算区域的气膜流场进行分析。结果表明:空气静压轴承气膜压力在节流孔的出口附近气膜间隙上出现分离,但在远离节流孔的出口气膜压力曲线是重合的;节流孔数为9时轴承节流孔出口处的最大压降幅度为节流孔数为1时的26%左右,最大速度突升幅度为节流孔数为1时的43%左右,表明增加节流孔的孔数可以显著减小节流孔的出口附近压力的突降、速度的突升,提高轴承工作稳定性;在空气静压轴承工作过程中,节流孔出口处附近压力和速度的突变会产生微振动现象,而采用环形多孔节流可显著降低微振动现象。  相似文献   

13.
设计一种新型径向槽结构静压气体轴承,其周向和径向截面分别呈椭圆弧形和扇形。建立该径向槽结构静压气体轴承CFD模型,分析径向槽结构参数如深度、半径、数目、角度和试验参数供气压力,对静压气体轴承承载能力和刚度的影响。研究结果表明:静压气体轴承承载能力随槽结构深度、数目、角度和供气压力增加逐渐增大,随槽结构半径增加先增大后减小;槽结构数目和供气压力对其承载能力影响尤为显著;静压气体轴承径向槽结构参数和供气压力影响其刚度及最佳刚度对应的气膜厚度,其中槽结构半径、数目和供气压力对刚度值影响显著,槽结构角度和半径对最佳刚度对应的气膜厚度影响显著。由此可见,径向槽结构参数显著影响静压气体轴承的承载能力和刚度。  相似文献   

14.
以小孔节流深浅腔动静压气体轴承为研究对象,采用Fluent软件对轴承的承载特性进行分析,研究偏心率、供气压力、主轴转速、气膜厚度、浅腔深度比等因素对轴承承载力和刚度的影响。结果表明:小孔节流深浅腔动静压气体轴承浅腔区的平均压力大于深腔区的平均压力,压力最大区域出现在浅腔末端靠近轴承端面处;随着供气压力的增加,承载力逐渐增大,但供气压力不应超过0.95 MPa;当主轴转速在3×10~5 r/min以内时,承载力和刚度随着转速的增加呈线性增长规律,当主轴转速超过3×10~5 r/min继续增加时,承载力和刚度的增长趋势明显放缓;承载力与刚度随着浅腔深度比的增加先增大后减小,当浅腔深度是气膜厚度的1~1.5倍时,承载力与刚度接近最大值。  相似文献   

15.
由于空气静压主轴气膜厚度处于微米级别,而主轴中的不平衡现象会影响轴承内的气膜厚度变化,因而需要对各微尺度影响因素综合考虑,并对影响主轴不平衡的各因素进行充分考虑才能真实反映主轴内的气膜流动状态,仿真出轴承的静态性能。充分考虑影响主轴不平衡的各因素并对传统雷诺方程进行修正,研究黏度、流量因子、速度滑移3个微尺度因子及转子偏心和制造误差对轴承静态性能的影响,并通过实验验证从而实现对空气静压主轴静态特性的真实预测和分析。结果表明:3个微尺度因子中,速度滑移对轴承气体压力分布影响最大,同时考虑3个微尺度因子时更能反映轴承气膜流动真实状态;转子偏心与制造误差耦合时,随转子偏心率增大,轴承中各节流孔附近的气膜压力分布与气膜刚度差异越来越大,将严重影响轴承气膜刚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号