首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Changes in cytosolic free Ca2+ concentration ([Ca2+]i) in response to acetylcholine (ACh) were examined by fura-2 fluorometry in cultured rat hippocampal neurons. ACh (greater than or equal to 10(-5) M) induced an increase in [Ca2+]i composed of fast transient and slow long-lasting phases. Atropine (10(-8) M) abolished the fast component and greatly reduced the slow component. The slow component was selectively blocked by pirenzepine (10(-6) M). The effect of ACh remained partially in a Ca2+-deficient medium where effects of L-glutamate and KCl (50 mM) were abolished. Present results suggest that ACh elevates [Ca2+]i by activation of muscarinic receptor subtypes, one of which is coupled with ion channels and the other of which transduces the ACh binding to mobilization of intracellularly stored Ca2+.  相似文献   

2.
In a study of isolated mouse pancreatic acinar cells, we used the patch-clamp whole-cell recording configuration to monitor the Ca(2+)-dependent inward ionic current and simultaneously measured the Ca2+ concentration in either the cytosol ([Ca2+]i) or the lumen of the endoplasmic reticulum ([Ca2+]Lu), using appropriate Ca(2+)-sensitive fluorescent probes. A high concentration of acetylcholine (ACh, 10 microM) evoked an increase in [Ca2+]i, which resulted in the activation of Ca(2+)-dependent inward current. Continued ACh application for several minutes led to a marked reduction in both the current and the [Ca2+]i response and after about 4-10 min of sustained ACh stimulation, the inward current response had disappeared and [Ca2+]i was back to the pre-stimulation level. Repeated stimulation with shorter pulses of ACh (10 microM) resulted in responses of declining magnitude both in terms of inward current and [Ca2+]i rises. The ACh-activated inward current was entirely dependent on the elevation of [Ca2+]i, but at a relatively high [Ca2+]i the current was saturated. ACh caused a rapid release of Ca2+ from the lumen of the endoplasmic reticulum and after discontinuation of stimulation, [Ca2+]Lu was only very slowly (10-15 min) fully restored to the pre-stimulation level. Repeated applications of ACh did not change the relationships between the Ca(2+)-dependent current and [Ca2+]i or the current and [Ca2+]Lu. When [Ca2+]Lu was greater than 100 microM, the ACh-evoked Ca2+ release from the store was so large that the current response was initially saturated. We conclude that the ACh-evoked current response essentially depends on the release of stored Ca2+. Desensitization is mainly due to the relatively slow reloading of the intracellular stores with Ca2+.  相似文献   

3.
Spontaneous catecholamine (CA) release from bovine chromaffin cells maintained in primary tissue culture has been measured after pre-loading the cells with [3H]noradrenaline. Ouabain inhibited 86Rb+ uptake and increased 3H release in a concentration-dependent manner during a 60 min incubation period. Low external Na+ (5 mM: Li+ substitution) also increased 3H release. Whereas the 3H-releasing action of ouabain was maintained, the Li(+)-evoked release decreased with time. The effects of both ouabain and low Na+ solution on 3H release were completely inhibited by removal of Ca2+ from the external medium even though in Ca2(+)-free solution ouabain further inhibited 86Rb+ uptake into the cells. Readmission of Ca2+ to Na(+)-loaded cells (10-4 M-ouabain in Ca2(+)-free-1 mM-EGTA solution for 60 min) markedly increased the release of 3H. In the additional presence of diphenylhydantoin (DPH, 10-4 M) 3H release was significantly less on Ca2+ readmission. The 3H release from Na(+)-loaded cells was proportional to the concentration of Ca2+ readmitted. The 3H release was further increased from Na(+)-loaded cells in response to Ca2+ readmission when [Na+]o was lowered from 149 to 5 mM (Li+, choline+, Tris+ or sucrose substitution) though Li+ was less effective than the other Na+ substitutes. Potassium removal from the external medium significantly inhibited the 3H release evoked by Ca2+ readmission to Na(+)-loaded cells, even when [Ca2+]o was greater than normal (7.5 mM) or if Ca2+ was readmitted in low [Na+]o solution. Rb+, Cs+ or Li+ could substitute for K+ with the order of potency: Rb+ greater than or equal to K+ greater than Cs+ greater than Li+. A slight increase of external K+ (10.8 mM) potentiated the 3H release from Na(+)-loaded cells on Ca2+ readmission, but a higher concentration of K+ (149.4 mM) had the opposite action. The data is consistent with the hypothesis that ouabain-evoked CA release from bovine chromaffin cells is, in part, a consequence of an internal Na(+)-dependent Ca2+ influx. The evidence also suggests that there is Na(+)-Ca2+ competition at the external arm of the exchanger together with a monovalent cation activation site.  相似文献   

4.
The effects of delta 9-tetrahydrocannabinol (delta 9-THC) on the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM or 29 mM K+ in rat whole brain synaptosomes were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. Pretreatment with 10(-10) M delta 9-THC for 3 min enhanced K(+)-evoked [Ca2+]i significantly, while 10(-9), 10(-8) or 5 x 10(-8) M delta 9-THC significantly inhibited the K(+)-evoked [Ca2+]i. These results suggest that delta 9-THC had a biphasic effect on the K(+)-evoked Ca2+ response in rat brain synaptosomes.  相似文献   

5.
The effect of somatomedin, or insulin-like growth factors (IGF-1 and IGF-2), on the basal and potassium induced release of [3H]acetylcholine ([3H]Ach) from rat cortical slices, previously preincubated with [3H]choline ([3H]Ch), was studied in vitro. IGF-1 (1.4 x 10(-9) to 1.4 x 10(-8) M) had no effect on the basal release of [3H]ACh, while IGF-1 (1.4 x 10(-9) to 4.3 x 10(-8) M) increased the potassium induced release of [3H]ACh from rat brain slices in a concentration-dependent manner. However IGF-2 (1.4 x 10(-8) M) had no effect. Insulin (1.8 x 10(-8) to 5.3 x 10(-8) M), similarly, did not have any influence on the release of [3H]ACh, demonstrating that the facilitatory effect of IGF-1 on [3H]ACh release is not mediated via insulin receptors. This report demonstrates for the first time that IGF-1 has an effect on neurotransmission in the adult brain.  相似文献   

6.
1. The intracellular K+, Na+, and Ca2+ of mechanosensory neurons in the central nervous system of the leech Hirudo medicinalis was measured using double-barreled ion-sensitive microelectrodes. 2. After inhibition of the Na(+)-K+ pump with 5 x 10(-4) M ouabain, the intracellular K+ activity (aKi) decreased, while the intracellular Na+ activity (aNai) increased. The input resistance decreased in the presence of ouabain. The intracellular Ca2+ increased more than one order of magnitude after ouabain addition. All changes in intracellular ion activities and membrane resistance were fully reversible. 3. When extracellular Na+ concentration ([Na+]o) was removed [replaced by tris(hydroxymethyl)aminomethane (Tris)], aNai decreased. In the absence of [Na+]o, aKi and aNai remained unchanged after inhibition of the Na(+)-K+ pump by reducing the extracellular K+ concentration ([K+]o) to 0.2 mM. The membrane resistance increased under these conditions. 4. The intracellular Ca2+ decreased or remained constant after removal of [Na+]o. Addition of ouabain in the absence of [Na+]o did not change intracellular Ca2+, which only increased after readdition of [Na+]o. 5. The relative K+ permeability (PK) measured as membrane potential change during a brief increase of the [K+]o from 4 to 10 mM, increased manyfold after addition of ouabain but only little if [Na+]o had been removed before adding ouabain. 6. The results suggest that the intracellular Na+ increase after inhibition of the Na(+)-K+ pump affects the intracellular Ca2+ level by stimulating a Nai(+)-Ca2+ exchange mechanism. The subsequent intracellular Ca2+ activity (aCai) rise may result in an increase of the membrane permeability to K+ ions.  相似文献   

7.
Agonist-induced platelet cytoplasmic Ca2+ concentrations ([Ca2+]i) in patients with congenital cyclo-oxygenase deficiency (A) and with impaired aggregation to A23187 (B) were measured with aequorin in the presence or absence of extracellular Ca2+. The influence of TMB-8 or ONO3708 on agonist-induced [Ca2+]i in those platelets was also investigated. In Patient 1, there was a single aequorin luminescence peak in response to arachidonate, which was a thromboxane A2(TXA2) independent Ca2+ influx. The luminescence peak due to the formation of TXA2 was not detectable. The A23187-induced [Ca2+] i was decreased in the presence of extracellular Ca2+, but was within normal limits in the absence of extracellular Ca2+. A thrombin or STA2-induced elevation of [Ca2+] i was always within normal limits under any conditions. These results suggest that cyclo-oxygenase activity (CO activity) contributes to the A23187-induced Ca2+ influx, but does not contribute to the Ca2+ release from intracellular stores, and that the thrombin or STA2-induced Ca2+ influx and release do not depend on the CO activity. In Patient 2, the time lag from the addition of A23187 to the aequorin luminescence peak was found both in the presence and absence of extracellular Ca2+, which was more obvious in the latter. This A23187-induced elevation of [Ca2+] i disappeared after treatment of the platelets with TMB-8 in the absence of extracellular Ca2+, which is rarely seen in normal platelets. The most striking finding was that the thrombin-induced rise in [Ca2+] i in the absence of extracellular Ca2+ was not detectable. These findings might be closely related to abnormal platelet function in this patient.  相似文献   

8.
This study investigates the effects of magnesium (Mg2+) on acetylcholine (ACh)-evoked secretory responses and calcium (Ca2+) mobilization in the isolated rat pancreas. ACh induced marked dose-dependent increases in total protein output and amylase release from superfused pancreatic segments in zero, normal (1 x 1 mM) and elevated (10 mM) extracellular Mg2+. Elevated Mg2+ attenuated the ACh-evoked secretory responses compared to zero and normal Mg2+. In the absence of extracellular Ca2+, but presence of 1 mM-EGTA (ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid), ACh elicited a small transient release of protein from pancreatic segments compared to a larger and more sustained secretion in the absence of both Ca2+ and Mg2+. Incubation of pancreatic segments with 45Ca2+ resulted in time-dependent uptake with maximum influx of 45Ca2+ occurring after 20 min of incubation period. ACh stimulated markedly the 45Ca2+ uptake compared to control tissues. In elevated extracellular Mg2+ the ACh-induced 45Ca2+ influx was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. ACh also evoked dose-dependent increases in cytosolic free Ca2+ concentrations ([Ca2+]i) in pancreatic acinar cells loaded with the fluorescent dye Fura-2 AM. In elevated Mg2+ the ACh-induced cytosolic [Ca2+]i was significantly (P less than 0.001) reduced compared to zero and normal Mg2+. These results indicate that Mg2+ can influence ACh-evoked secretory responses possibly by controlling both Ca2+ influx and release in pancreatic acinar cells.  相似文献   

9.
To investigate the alteration in acetylcholine (ACh)-induced increase in Ca2+ sensitization of bronchial smooth muscle contraction concurrent with the airway hyperresponsiveness (AHR), the ACh-induced increases in cytosolic Ca2+ ([Ca2+]) level and contractile response were simultaneously determined by using Fura-2 loaded bronchial smooth muscle. The left main bronchi were isolated from AHR rats which were sensitized and repeatedly challenged with DNP-Ascaris antigen. The tissue ring preparations were incubated in loading solution containing 10 microM Fura-2AM for 3 hr at room temperature. Then the isometrical contraction and [Ca2+]i (F340/F380) were monitored. Although the ACh (10(-3) M)-induced contractile response in AHR group (322 +/- 60 % of 60 mM K+ induced contraction) was significantly greater than that in control animals (173 +/- 15 %, p<0.05), the ACh (10(-3) M)-induced increase in [Ca2+]i was without significant difference between the two groups (128 +/- 15 and 171 +/- 29% of 60 mM K+ -induced increase in [Ca2+]i, respectively). These findings suggest that an augmentation of ACh-induced Ca2+ sensitization may occur in bronchial smooth muscle of the rats with antigen-induced AHR.  相似文献   

10.
The inhibitory effects of CR-1409, a new glutaramic acid derivative developed as a cholecystokinin (CCK) receptor antagonist, on caerulein-stimulated amylase secretion and on intracellular Ca2+ ([Ca2+]i) mobilization were studied in isolated rat pancreatic acini. Pancreatic acini were prepared by collagenase digestion method and loaded with 1 microM fura-2/AM for measurement of the intracellular free Ca2+ concentration. Amylase release was examined by a perifusion method. Stimulation with 10(-10) M caerulein, 10(-5) M carbachol, or 10(-8) M gastrin-releasing peptide (GRP) led to biphasic amylase release and increase in [Ca2+]i. CR-1409 at 1 and 5 microM inhibited, by 50 and 84%, respectively, the amylase secretion and increase in [Ca2+]i induced by 10(-10) M caerulein, and 25 microM CR-1409 completely inhibited both amylase secretion and increase in [Ca2+]i induced by caerulein. However, 25 microM CR-1409 did not inhibit unstimulated secretion of amylase or the secretions induced by carbachol and GRP, which are also mediated by changes in intracellular Ca2+. We conclude that CR-1409 acts as a specific inhibitor of the CCK receptor in the pancreas, and is useful in studies on the involvement of the release and action of CCK in vitro.  相似文献   

11.
We investigated the relationship between tension development and the cytosolic free Ca2+ level ([Ca2+]i) in responses to norepinephrine (NE) and selective alpha2-adrenoceptor agonist, UK14,304 of the endothelium-denuded rat aorta loaded with fura PE-3. NE (3 x 10(-8) M) evoked a rapid increase in [Ca2+]i followed by slight decreasing to a steady state level and produced a contraction. After the NE-induced increase in [Ca2+]i had reached a maximum, the [Ca2+]i showed persistent oscillations. The Ca2+ oscillations were superimposed on the sustained increase in [Ca2+]i. UK14,304 (3 x 10(-6) M) also evoked an increase in [Ca2+]i and produced a contraction. However, the UK14,304-induced effect on [Ca2+]i was characterized by pronounced oscillations, and the amplitude of the sustained increase in [Ca2+]i was less than that seen with NE. Protein kinase C inhibitor, Ro31-8220 (3 x 10(-6) M) and verapamil (10(-5) M) abolished both NE and UK14,304-evoked Ca2+ oscillations. UK14,304-induced contractions were also strongly inhibited by Ro31-8220 and verapamil. However, NE induced contractions were partly inhibited by these inhibitors. The sustained increases in [Ca2+]i evoked NE and UK14,304 were not significantly inhibited by Ro31-8220 and verapamil. These results suggest that NE and UK14,304 produce Ca2+ oscillations during sustained contractions in rat aorta. The alpha2 adrenoceptor agonist, UK14,304-induced sustained contraction and Ca2+ oscillations may be due to PKC activation and opening of voltage-dependent L type Ca2+ channels.  相似文献   

12.
Ca-selective microelectrodes were used to examine calcium transport during acetylcholine (ACh) and Epinephrine (Ep) stimulation of amylase secretion in the parotid gland. The cytosolic concentration of free ionized Ca2+ ( [Ca]i) determined in unstimulated cells was 0.44 +/- 0.04 microM. By measuring the induced changes in intracellular electrode potentials (ECa, EM) we were able to demonstrate that ACh at 10(-9), 10(-8), 10(-7), 10(-6), and 10(-5) M increased [Ca]i by 0.20 +/- 0.02, 0.61 +/- 0.04, 0.53 +/- 0.02, 0.30 +/- 0.05, and 0.14 +/- 0.03 microM. Similarly, Ep increased [Ca]i by 0.14 +/- 0.01, 0.42 +/- 0.06, 0.31 +/- 0.04, 0.15 +/- 0.03, and 0.05 +/- 0.04, respectively. Removal of extracellular Ca2+ significantly (P less than 0.001) altered the changes in ECa in response to ACh and Ep stimulation, thereby demonstrating that the induced increases in [Ca]i must be due to a transmembrane movement of Ca2+. Enzyme secretion was found to vary with the concentration of the stimulus used. Maximal secretion occurred during stimulation using 10(-7) M and 10(-8) M Ep with a suppression of release at supramaximal concentrations. The dose-response curve for ACh differed in that there were two concentrations of stimulus (2 X 10(-9) and 1 X 10(-6) M ACh) in which the greatest rate of secretion occurred. Concentrations of stimulus which increase [Ca]i between 0.86 +/- 0.06 microM and 0.74 +/- 0.05 appeared to produce optimal amylase secretion, indicating that salivary secretion in the mouse parotid is regulated within a narrow concentration range of cytosolic Ca2+.  相似文献   

13.
The aim of the present investigation was to examine the effect of beta-adrenergic stimulation on smooth muscle calcium concentration ([Ca2+]i) in resting conditions and after administration of norepinephrine (NE) to stimulate alpha-adrenoceptors in isolated rabbit afferent arterioles loaded with the calcium-sensitive fluorescent probe fura-2. [Ca2+]i was evaluated in the proximal and distal parts of the arterioles. NE (4x10(-7) M) increased [Ca2+]i in both these regions. The alpha1-adrenoceptor antagonist prazosin (10(-7) M) totally abolished the NE-induced increase in [Ca2+]i, while the alpha2-adrenoceptor antagonist yohimbine (5x10(-7) M) had no influence on the response to NE. When beta-adrenoceptors were stimulated, using isoproterenol (10(-7) M), the NE-induced increase in [Ca2+]i was significantly lower in both regions. Activation of beta-adrenoceptors with isoproterenol did not affect the [Ca2+]i increase in response to depolarization with K+. Since beta-adrenoceptor stimulation raises the smooth muscle cell levels of cAMP, an adenylate cyclase stimulator, forskolin (10(-5) M) was administered prior to NE application. This maneuver also blunted the increase in [Ca2+]i in both regions. We conclude that the calcium response to NE in the isolated rabbit afferent arteriole is mediated by an alpha1-adrenoceptor. beta-Adrenoceptor stimulation and forskolin blunt the increase in [Ca2+]i induced by NE stimulation, indicating that cAMP counteracts the NE-induced activation of alpha1-adrenoceptors.  相似文献   

14.
The origin of intracellular Ca2+ concentration ([Ca2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to approximately 60% of control in the presence of either atropine (1 microM) or mecamylamine (3 microM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 microM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.  相似文献   

15.
The relaxation effects of forskolin and methylxanthines on noradrenaline (NA)-induced contractions were investigated by measuring isotonic contraction and intracellular calcium concentration ([Ca2+]i) in the epididymal side of guinea-pig vas deferens. NA (100 microM) and high K+ (55 mM) induced a biphasic contraction; fast, transient (phasic) and slow, sustained (tonic) phases. Both phases in either NA or high K+ stimulation were abolished in Ca2+-free solution. Pretreatment with 10 microM nifedipine, an L-type Ca2+ channel blocker, reduced both phasic and tonic contractions induced by high K+. In the case of NA-induced contraction, however, nifedipine reduced the phasic contraction but not the tonic contraction. The nifedipine-insensitive tonic contraction was relaxed by the application of polyvalent cations (Mn2+, Co2+, Cd2+ and La3+). These findings indicate that NA-induced biphasic contraction is mainly due to nifedipine-insensitive Ca2+ influx, especially in the tonic phase. Cyclic AMP-increasing agents such as forskolin (0.5-10 microM), IBMX (5-500 microM) and caffeine (1-20 mM) relaxed the NA-induced contraction extensively in a concentration-dependent manner. However, these agents only partially relaxed the high K+-induced contraction. Forskolin (10 microM) and IBMX (100 microM) reduced the [Ca2+]i response to NA, but had no effect on the [Ca2+]i response to high K+. These results suggest that an increase in intracellular cAMP may relax the NA-induced contraction by attenuating a nifedipine-insensitive Ca2+ influx and by a mechanism independent of a reduction in [Ca2+]i.  相似文献   

16.
This study investigated the effects of extracellular magnesium concentration ([Mg2+]e; 0.3-3 mM) on intracellular free calcium concentration ([Ca2+]i) and prostacyclin (PGI2) production in cultured human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells from rats (VSMC) under basal and agonist-stimulated conditions. We used histamine as agonist which increases [Ca2+]i and PGI2 production in HUVEC, norepinephrine in VSMC. [Mg2+]e dose-dependently increased basal and agonist-stimulated PGI2 production in both cells. [Mg2+]e dose-dependently reduced basal [Ca2+]i in VSMC, but did not influence in HUVEC. In both cells, increasing [Mg2+]e reduced agonist-stimulated [Ca2+]i responses. Furthermore, [Mg2+]e dose-dependently reduced agonist-stimulated [Ca2+]i in Ca(2+)-free buffer, indicating intracellular Ca2+ release. In VSMC, 10(-6) M diltiazem and 10(-7) M nifedipine, Ca2+ channel blockers, reduced agonist-stimulated [Ca2+]i as well as 3 mM Mg2+, but did not affect PGI2 production. [Mg2+]e amplified dose-dependently arachidonic acid-induced PGI2 production in both cells, suggesting the activation of cyclooxygenase and/or PGI2 synthetase. Our results suggest that [Mg2+]e influences intracellular Ca2+ mobilization of not only vascular smooth muscle cells but also endothelial cells by inhibiting both Ca2+ influx and intracellular Ca2+ release. [Mg2+]e enhances PGI2 production in both types of cells, although the mechanism is likely to be independent from Ca2+ mobilization.  相似文献   

17.
The influence of extracellular Ca2+ concentration, [Ca2+]o, on the secretory response to acetylcholine (ACh) was analyzed in isolated perfused rat pancreas. The decrease of [Ca2+]o strongly diminished the amylase output and pancreatic juice flow in response to continuous stimulation with 5 X 10(-8) M ACh. A quantitative relation was found between the amount of amylase release by 5 X 10(-8) M ACh and the [Ca2+]o over a range of 0.1--2.5 mM. The partial replacement of NaCl with LiCl produced a diminution in both amylase output and pancreatic juice flow. A quantitative relation existed between the amount of ACh-induced amylase release and the [Na+]o over a range of 86--157 mM. The partial replacement of KCl with NaCl produced falls in both amylase output and pancreatic juice flow. Again, a quantitative relation existed between ACh-induced amylase release and [K+]o over a range of 1.0--5.6 mM. These results are compatible with the view that both the amylase output and the juice flow induced by 5 X 10(-8) M ACh are proportional to the amount of carrier-Ca complex and that the inward movement of the complex may be linked closely to the activation of Na pumps on the pancreatic acinar cell. A dose-response relation was found between the concentration of ACh and the amylase output. The relation was shifted to the left when 1 mU/ml cholecystokinin-pancreozymin (CCK-PZ) was added. A similar shift was observed when 1 mU/ml secretin was added. These results support the view that ACh, CCK-PZ, and secretin may activate the common cellular process in stimulus-secretion coupling, although these secretagogues may severally act on the different receptor sites.  相似文献   

18.
Trifluoperazine, a calmodulin antagonist, inhibited the secretory response of cultured bovine adrenal medullary chromaffin cells to acetylcholine (10(-4) M) or a depolarizing concentration of [K+] (56 mM KCl) in a dose-related fashion. The ID50s of this effect were 2 x 10(-7) M and 2.2 x 10(-6) M for acetylcholine and high [K+], respectively. A decrease in external [Ca2+] concentration of the incubation medium from 4.4 to 0.275 mM resulted in an increase in the percentage of inhibition produced by trifluoperazine on the acetylcholine-evoked secretory response from 20.7 to 96.5%, respectively. However, trifluoperazine inhibited the acetylcholine-evoked catecholamine output by a similar absolute magnitude for all [Ca2+] concentrations tested with the exception of 4.4 mM [Ca2+]. Trifluoperazine, unlike the [Ca2+] channel blocker Ni2+, in concentrations (10(-6)-10(-5) M) that were found to inhibit significantly [K+]-induced amine output did not modify [K+]-induced 45Ca uptake or 45Ca efflux. However, trifluoperazine at a concentration of 2.5 x 10(-5) M was found to produce a small decrease in the 45Ca efflux curve and a decrease in the [K+]-evoked 45Ca uptake of 30 +/- 14% (n = 6). In addition, 2.5 x 10(-6) M trifluoperazine, a concentration which was found to suppress high [K+]-induced amine release by 64 +/- 5%, did not inhibit the 45Ca2+-Ca2+ exchange mechanism. These results demonstrate that trifluoperazine, an antipsychotic agent with anticalmodulin activity, blocks catecholamine release from cultured chromaffin cells at a step distal from calcium entry and, consequently, suggests a role for calmodulin in the secretory process of these cells.  相似文献   

19.
The cytoplasmic Ca2+ signal is transferred to the mitochondrial matrix and activates mitochondrial dehydrogenases. The requirement for supramicromolar cytoplasmic [Ca2+] ([Ca2+]i) in perimitochondrial microdomains in this response has been suggested. We studied the correlation between [Ca2+]i, mitochondrial [Ca2+] ([Ca2+]m) and mitochondrial formation of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the presence of submicromolar [Ca2+]i in cultured rat "large" luteal cells. [Ca2+]i was monitored fluorimetrically with fura-PE3, [Ca2+]m with rhod-2 and NAD(P)H with autofluorescence. In intact cells, prostaglandin F2alpha, which induces both intracellular Ca2+ release and Ca2+ entry, stimulated mitochondrial NAD(P)H formation. Thapsigargin-induced Ca2+ release and subsequent capacitative Ca2+ entry, both resulting in Ca2+ responses not exceeding 150-200 nM, also enhanced the reduction of pyridine nucleotides. As shown in inhibitor studies, the increased steady-state NAD(P)H level was due to activation of Ca2+-dependent dehydrogenases. [Ca2+]m, measured in permeabilized cells, increased moderately, but significantly, following elevation of [Ca2+]i from 50 to 180 nM, showed a further gradual increase at higher submicromolar [Ca2+]i values and rose steeply at supramicromolar [Ca2+]i. In summary, our results demonstrate that, in a steroid-producing cell type, net mitochondrial Ca2+ uptake and mitochondrial dehydrogenation can be activated even by low submicromolar increases of [Ca2+]i.  相似文献   

20.
The effect of platelet-activating factor on the intracellular cytosolic level of free calcium ([Ca2+]i) was studied in neurohybrid NCB-20 cells. In fura-2-loaded NCB-20 cells, platelet-activating factor induced an immediate and concentration-dependent increase in [Ca2+]i with a maximum increase of 334 +/- 27 nM above a basal value of 147 +/- 6 nM (n = 40). Platelet-activating factor-induced [Ca2+]i mobilization was inhibited by the platelet-activating factor antagonists BN 50739, WEB 2086, SRI 63-441 and BN 52021 in a dose-dependent manner with IC50 values of 12, 38, 897 and 45000 nM, respectively. The calcium-channel blockers nifedipine (10 microM) and diltiazem (10 microM) had no effect on the platelet-activating factor-induced increase in [Ca2+]i; however, extracellular Ca(2+)-depletion caused a 63.6 +/- 4.7% reduction of platelet-activating factor-induced increase in [Ca2+]i (n = 5, P less than 0.001). The remaining 36% contributed from intracellular sources was completely inhibited by 10 microM of 8-(N,N-diethylamine)octyl 3,4,5-trimethoxytenzoate hydrochloride (TMB-8). NCB-20 cells exhibited homologous desensitization to sequential addition of platelet-activating factor, but no heterologous desensitization between platelet-activating factor and bradykinin or ATP was observed. These data suggest that activation of the neuronal platelet-activating factor receptor results in an increase in [Ca2+]i primarily via a receptor-operated rather than a voltage-dependent calcium-channel and to a lesser extent from intracellular Ca2+ release. Our findings may contribute to an understanding of the mechanism of platelet-activating factor actions on neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号