首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
A functional layer and a porous support that together constitute an anode for a solid oxide fuel cell were simultaneously formed by the phase‐inversion tape casting method. Two slurries, one composed of NiO and yttria‐stabilized zirconia (YSZ) powders and the other of NiO, YSZ, and graphite were cocasted and solidified by immersion in a water bath via the phase‐inversion mechanism. The as‐formed green tape consisted of a sponge‐like thin layer and a fingerlike thick porous layer, derived from the first slurry and the second slurry, respectively. The former acted as the anode functional layer (AFL), while the latter was used as the anode substrate. The AFL thickness was varied between 20 and 60 μm by adjusting the blade gap for the tape casting. Single cells based on such NiO‐YSZ anodes were prepared with thin YSZ electrolytes and YSZ‐(La0.8Sr0.2)0.95MnO3?δ (LSM) cathodes, and their electrochemical performance was measured using air as oxidant and hydrogen as fuel. The maximum power densities obtained at 750°C were 720, 821, and 988 mW cm?2 with the AFL thickness at 60, 40, and 20 μm, respectively. The satisfactory electrochemical performance was attributed to the dual‐layer structure of the anode, where the sponge‐like AFL layer provided plenty of triple‐phase boundaries for hydrogen oxidation, and the fingerlike thick porous substrate allowed for facile fuel transport. The phase‐inversion tape casting developed in this study is applicable to the preparation of other planar ceramic electrodes with dual‐layer asymmetric structure.  相似文献   

2.
A novel route was developed to fabricate anode‐supported solid oxide fuel cells with a high throughput and low manufacturing costs. In contrast to classical manufacturing routes, this novel route starts with the tape casting of the thin electrolyte followed by the tape casting of the anode and anode support. All three layers were cast green‐on‐green and finally sintered to yield a gas‐tight electrolyte. By carefully selecting the raw materials for all three layers, it is possible to manufacture near‐net‐shape half‐cells. The half‐cells were characterized with respect to thickness, microstructure, bending behavior, electrolyte gas leakage, shrinkage, electrolyte residual stresses, and mechanical strength. Finally, the cathode was screen‐printed and fired, and the full cell characteristics were obtained in single‐cell and stack tests. Additionally, a scale‐up to cell sizes of 200 × 200 mm2 was verified. Electrolyte and anode thickness were around 20 μm, and the support was cast to 300–500 μm. The helium leak rates were better than the necessary internal threshold, and the characteristic bending strength obtained was in the range of 150–200 MPa. The single‐cell tests revealed current densities of 1.0 A cm–2 at 700 mV and 800 °C (H2/air). A first stack test proved their stackability and operational functionality.  相似文献   

3.
The electrochemical performance of an anode material for a solid oxide fuel cell (SOFC) depends highly on microstructure in addition to composition. In this study, a NiO–yttria‐stabilised zirconia (NiO–YSZ) composite with a highly dispersed microstructure and large pore volume/surface area has been synthesised by ultrasonic spray pyrolysis (USP) and its electrochemical characteristics has been investigated. For comparison, the electrochemical performance of a conventional NiO–YSZ is also evaluated. The power density of the zirconia electrolyte‐supported SOFC with the synthesised anode is ∼392 mW cm–2 at 900 °C and that of the SOFC with the conventional NiO–YSZ anode is ∼315 mW cm–2. The improvement is ∼24%. This result demonstrates that the synthesised NiO–YSZ is a potential alternative anode material for SOFCs fabricated with a zirconia solid electrolyte.  相似文献   

4.
Flexible solid oxide fuel cells (SOFCs) have attracted increasing attention due to their excellent mechanical stability and lightness. An essential electrolyte material for developing highly flexible SOFCs is 3 mol% yttria-stabilized zirconia (3YSZ), but there remain some difficulties in its application to SOFCs. We report a phase-controlled, bendable, ultra-thin 3YSZ electrolyte with a thickness of ~22 µm, high flexural strength, and improved ohmic resistance that surpasses that of 8 mol% YSZ electrolytes. A flexible cell (total thickness < 60 µm) is fabricated through simple and reproducible methods such as tape casting and screen printing. The highest cell performance is achieved among the reported flexible SOFCs, with the maximum power density of 0.86 W cm?2 at 900 °C using conventional cermet electrodes, Ni-YSZ anode, and LSM-YSZ cathode. Our study provides a well-defined framework for developing flexible SOFCs as next-generation power sources for mobile devices with high volumetric power.  相似文献   

5.
An NiO/yttria-stabilized zirconia (YSZ) layer sintered at temperatures between 1100° and 1500°C onto dense YSZ electrolyte foils forms the precursor structure for a porous Ni/YSZ cermet anode for solid oxide fuel cells. Conflicting requirements for the electrochemical performance and mechanical strength of such cells are investigated. A minimum polarization resistance of 0.09 Ω.cm2at 1000°C in moist hydrogen is obtained for sintering temperatures of 1300°–1400°C. The mechanical strength of the cells decreases with increased sintering temperature because of the formation of channel cracks in the electrode layers, originating in a thermal expansion coefficient mismatch between the layers.  相似文献   

6.
A co‐extrusion technique was employed to fabricate a novel dual layer NiO/NiO‐YSZ hollow fiber (HF) precursor which was then co‐sintered at 1,400 °C and reduced at 700 °C to form, respectively, a meshed porous inner Ni current collector and outer Ni‐YSZ anode layers for SOFC applications. The inner thin and highly porous “mesh‐like” pure Ni layer of approximately 50 μm in thickness functions as a current collector in micro‐tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni‐YSZ layer of 260 μm acts as an anode, providing also major mechanical strength to the dual‐layer HF. Achieved morphology consisted of short finger‐like voids originating from the inner lumen of the HF, and a sponge‐like structure filling most of the Ni‐YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 × 105 S m–1. This result is significantly higher than previous reported results on single layer Ni‐YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual‐layer HF design as a new and highly efficient way of collecting current from the lumen of micro‐tubular SOFC.  相似文献   

7.
We report a freestanding micro solid oxide fuel cell with both the anode and cathode deposited using electrostatic spray deposition (ESD) technique. The cell is consisted of dense yittria‐stabilized zirconia (YSZ) electrolyte (100 nm thick), porous lanthanum strontium manganite (LSM)–YSZ cathode (∼3 μm thick), and porous NiO‐YSZ anode (∼3 μm thick). LSM‐YSZ and NiO‐YSZ composite powders were initially prepared by glycine nitrate process and super‐critical fluid processes, respectively, and both cathode and anode layers were deposited by the ESD. The resulting freestanding micro cell exhibited an open circuit voltage close to the theoretical value of 1.09 V, and a maximum power density of 41.3 mWcm–2 at 640 °C.  相似文献   

8.
Y. Chen  F. Chen  D. Ding  J. Gao 《Fuel Cells》2011,11(3):451-458
The paper reports a new concept of planar‐tubular solid oxide fuel cell (PT‐SOFC). Emphasis is on the fabrication of the required complex configuration of Ni‐yttria‐stabilised zirconia (YSZ) porous anode support by tert‐butyl alcohol (TBA) based gelcasting, particularly the effects of solid loading, amounts of monomers and dispersant on the rheological behaviour of suspension, the shrinkage of a wet gelcast green body upon drying, and the properties of final sample after sintering at 1350 °C and reduction from NiO‐YSZ to Ni‐YSZ. The results show that the gelcasting is a powerful method for preparation of the required complex configuration anode support. The anode support resulted from an optimised suspension with the solid loading of 25 vol% has uniform microstructure with 37% porosity, bending strength of 44 MPa and conductivity of 300 S cm—1 at 700 °C, meeting the requirements for an anode support of SOFC. Based on the as‐prepared anode support, PT‐SOFC single cell of Ni‐YSZ/YSZ/LSCF has been fabricated by slurry coating and co‐sintering technique. The cell peak power density reaches 63, 106 and 141 mW cm—2 at 700, 750 and 800 °C, respectively, using hydrogen as fuel and ambient air as oxidant.  相似文献   

9.
A new proton conducting fuel cell design based on the BZCYYb electrolyte is studied in this research. In high‐performance YSZ‐based SOFCs, the Ni‐YSZ support plays a key role in providing required electrical properties and robust mechanical behavior. In this study, this well‐established Ni‐YSZ support is used to maintain the proton conducting fuel cell integrity. The cell is in a Ni‐YSZ (375 μm support)/Ni‐BZCYYb (20 μm anode functional layer)/BZCYYb (10 μm electrolyte)/LSCF‐BZCYYb (25 μm cathode) configuration. Maximum power density values of 166, 218, and 285 mW/cm2 have been obtained at 600°C, 650°C, and 700°C, respectively. AC impedance spectroscopy results show values of 2.17, 1.23, and 0.76 Ω·cm2 at these temperatures where the main resistance contributor above 600°C is ohmic resistance. Very fine NiO and YSZ powders were used to achieve a suitable sintering shrinkage which can enhance the electrolyte sintering. During cosintering of the support and BZCYYb electrolyte layers, the higher shrinkage of the support layer led to compressive stress in the electrolyte, thereby enhancing its densification. The promising results of the current study show that a new generation of proton conducting fuel cells based on the chemically and mechanically robust Ni‐YSZ support can be developed which can improve long‐term performance and reduce fabrication costs of proton conducting fuel cells.  相似文献   

10.
《Ceramics International》2016,42(10):11757-11765
The effects of NiO powder morphology and sintering temperature on the microstructure and the electrochemical performance of Nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet anodes for solid oxide fuel cells (SOFCs) were investigated. The particle size and agglomeration of the starting powders were found to affect both the microstructure and electrochemical performance of the Ni-ScSZ cermet anodes. The lowest polarization resistance, 0.690 Ω cm2 at 700 °C, was measured for the Ni-ScSZ anode prepared with fine NiO powder (~0.5 µm grain size). This was attributed to the increase in the number of reaction sites afforded by the small grains and well-dispersed Ni and ScSZ phases. The effect of the anode sintering temperature was also found to affect the anode microstructure, adhesion with the electrolyte, and consequently anode polarization resistance. The lowest polarization resistance was observed for the anode sintered at 1400 °C and this was 3–5 times lower than the corresponding values for anodes sintered at lower temperatures.  相似文献   

11.
《Ceramics International》2016,42(7):8559-8564
In this work NiO/3 mol% Y2O3–ZrO2 (3YSZ) and NiO/8 mol% Y2O3–ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni–8YSZ the porosity and shrinkage of Ni–3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni–3YSZ and Ni–8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67 W cm−2 at 800 °C, respectively. Furthermore, in order to improve the cell performance, a Ni–8YSZ anode functional layer was added between the electrolyte and Ni–YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73 W cm−2 were achieved at 800 °C for single cells with Ni–3YSZ and Ni–8YSZ hollow fibers, respectively.  相似文献   

12.
Developing new generation of strong, tough and stable bioceramics used in dental filed has been highly desired for attaining the clinical requirement of secure and reliable therapy. In this paper, a novel Al2O3-ZrO2 eutectic bioceramics with nearly fully density and extremely aesthetic luster was in-situ prepared by innovative laser floating zone melting (LFZM) method. The influence of solidification rates on microstructure evolution, mechanical properties and cytotoxicity was investigated. The eutectic bioceramics displayed a special three dimensional interpenetrating microstructure evolving with increasing the solidification rate. The eutectic colony structure occurred when solidification rate overpassed 8?µm/s, and lamellar spacing was below 1?µm when solidification rate exceeded 30?µm/s. The eutectic bioceramics solidified at 100?µm/s exhibited optimal mechanical properties with an average hardness of 16.53?GPa, fracture toughness of 6.5?MPa?m1/2 and flexural strength of 1.37?GPa. The cytotoxicity of Al2O3-ZrO2 eutectic bioceramics was evaluated by MTT methods according to ISO 10993-5 standard. Non-cytotoxic behavior was detected for the eutectic bioceramics, indicating this eutectic bioceramic could be used as promising dental restoration material.  相似文献   

13.
The aim of this paper is to present research findings on the measurements of mechanical, morphological, and thermal properties of Roselle fiber-reinforced thermoplastic polyurethane composites. The Roselle fiber/thermoplastic polyurethane composites were prepared with fibers of different sizes such as 125?µm and lower, 125–300 and 300–425?µm by internal mixer and hot press at 170°C. The results show that mechanical properties (tensile, flexural, and impact properties) of the composites were improved with the increase in fiber sizes. The highest tensile (10.45?MPa), flexural strength (6.93?MPa), and impact strength (20.22 kJ/m2) was obtained from composites with 300–425?µm fiber size of Roselle fiber/thermoplastic polyurethane composites. Morphological properties of dispersion fiber and tensile fracture surfaces were studied using scanning electron microscope. Thermal properties of the composites were studied using thermogravimetric analyses and results showed that the thermal decomposition effect was almost similar for all compositions.  相似文献   

14.
A homogeneous dispersion of nickel in a YSZ ceramic matrix by the polymeric organic complex solution method was achieved. A YSZ powder was added to the polymeric gel containing Ni2+ cations leading to an organic resin in which the YSZ particles were embedded. By further heat treatment a composite of ultrafine nickel oxide dispersed in the YSZ matrix was attained. After sintering and reducing treatment of nanocrystalline NiO/YSZ composite, the microstructure of the Ni/YSZ cermet showed a uniform distribution of the porous metallic Ni particles of about 1–2 μm surrounded by a microporous space. The electrical properties of NiO/YSZ (55/45 wt.%) composites were studied using impedance spectroscopy in the temperature range from 100 to about 700 °C. Variations in activation energy were in agreement to the NiO electrical behaviour with increasing temperatures for polymer complex solution NiO/YSZ prepared composite, which indicates a uniform and fine-grained microstructure, in which the YSZ–YSZ and/or the NiO–NiO particle contacts were predominant.  相似文献   

15.
Master sintering curves (MSCs) were constructed for tape cast NiO, YSZ and NiO/YSZ composite materials using apparent activation energies obtained through dilatometry experiments. A rule of mixtures approach was demonstrated to be a useful analysis tool in understanding the activation energy of the NiO/YSZ composites since NiO and YSZ do not affect the sintering of the other phase. Prediction of the 48 vol% NiO composite was less accurate because of competing sintering modes near the percolation threshold.  相似文献   

16.
In the present work, laminar ceramic structures formed by layers of alumina and partially stabilized zirconia were fabricated by water-based tape casting. Rheological, physical and mechanical properties of slurries and laminates were evaluated. The laminates consisted of stacked alumina and zirconia green tapes produced by thermopressing. Pyrolysis was carried out at 450 °C and sintering at 1500 °C. The alumina/zirconia laminates were studied for a better understanding of the formation behavior and crack propagation at the laminate interface. The flexural strength values of laminates depend on the stress state on their surface. The laminates with the highest amount of zirconia layers presented low strength values (6.7 MPa), while the laminates with more alumina layers had a higher strength level (57.7 MPa). This is because these laminates have alumina layers on the surface which are in a state of residual compressive stress.  相似文献   

17.
《Ceramics International》2015,41(7):8785-8790
In this study, 3 mol% yttria stabilized zirconia (3YSZ) is investigated as a SOFC electrolyte alternative to 8 mol% yttria stabilized zirconia (8YSZ). The mechanical and electrochemical properties of both materials are compared. The mechanical tests indicate that the thickness of 3YSZ can be reduced to half without sacrificing the strength compared to 8YSZ. By reducing the thickness of 3YSZ from 150 µm to 75 µm, the peak power density is shown to increase by around 80%. The performance is further enhanced by around 22% by designing of novel electrode structure with regular cut-off patterns previously optimized. However, the cell with novel designed 3YSZ electrolyte exhibits 30% lower maximum power density than that of the cell with 150 µm-thick standard 8YSZ electrolyte. Nevertheless, the loss in the performance may be tolerated by decreasing the fabrication cost revealing that 3YSZ electrolyte with cut-off patterns can be employed as SOFC electrolyte alternative to 8YSZ.  相似文献   

18.
Direct methane Solid Oxide Fuel Cells (SOFCs) operated under catalytic partial oxidation (CPOX) conditions are investigated, focusing on the processing of the anode support and the anode deactivation caused by carbon deposition. Anode-supported SOFCs based on gadolinium-doped ceria (GDC) electrolyte, and NiO-GDC anode support were fabricated by the gel-casting method. Suitable aqueous slurries formulations of NiO–GDC were prepared, starting NiO-GDC nanocomposite powders, agarose as gelling agent and rice starch as pore former. Electrochemical and mechanical tests evidenced that the support of 550 ± 50 µm thickness and 10 wt% pore former is a good candidate for direct-methane SOFCs. The cells operating under stoichiometric conditions of CPOX reached a performance of 0.64 W·cm?2 at 650 ºC, a very close value to that measured under humidified hydrogen (0.71 W·cm?2). The best electrochemical stability of the cell is achieved at a CH4/O2 ratio of 2.5, showing no evidence of carbon deposition and reducing nickel re-oxidation significantly.  相似文献   

19.
The graphite-doped SiC ceramics with net-like structure was fabricated via tape casting and pressureless sintering. The ceramics exhibited a step-like fracture mode, which could be attributed to the net-like structure composed of long columnar SiC grains, layered graphite, and the three-modal pore distribution. The formation of warped epitaxial graphene and large size graphite could be attributed to the pyrolysis of organics in the tape casting system. In the net-like structure, the SiC grains provide the high strength, whereas the layered graphite and three-modal pores were used to deflect the cracks and release the stress at the tip, following the crack-tip-shielding mechanism. The sample with a net-like structure exhibited a combination of a variety of extrinsic toughening mechanisms, such as crack deflection, crack bridging, crack branching and delamination, pull-out, and rupture of layered graphite, which led to improved fracture toughness of 7?MPa?m1/2, flexural strength of 400?MPa, and (work of fracture) WOF of 3.3?kJ?m?2. When increasing the graphite content, the electrical conductivity of the graphite-doped SiC ceramics significantly increased from 7.15?×?10?4 to 216 S/m. The high shielding effectiveness of 34.1?dB was due to the multi-absorption on the various surfaces during the multi-reflection by the net-like structure.  相似文献   

20.
Slurries prepared by mixing organic additives with NiO/YSZ powders were deposited by spray coating onto an anode substrate obtained by tape casting to produce a NiO/YSZ anode functional layer with 40 wt.% NiO. The rheology and the chemical stability of slurries with two concentrations of polymethylmethacrylate (PMMA), 1 and 2 wt.%, were systematically studied, and the microstructures of the anode functional films obtained were compared. Rheological measurements showed that both slurries present pseudoplastic and thixotropic behaviors and that the 2 wt.% PMMA slurry is more homogeneous and maintains chemical stability over a longer period of time. The anode functional films showed good adherence and were free of cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号