首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious pest of cotton and many other crops in northern China. To evaluate the contribution of alternative hosts as an effective refuge for transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin, the susceptibility to this toxin was measured in progeny derived from field-collected H. armigera larvae and pupae from different hosts in the Xiajin’s region of the Shandong Province in northern China. During 2008-2010, progeny from a total of 258,56,184 and 160 single-pair crosses derived from wheat (first-generation), Bt cotton (second-generation), Bt cotton (third-generation), and corn (third-generation) were screened on Cry1Ac diets, respectively. Based on relative average development rates (RADR) of H. armigera larvae in these F1 tests, the second and third-generation moths emerging from Bt cotton fields were more tolerant to the Bt toxin than the first and third-generation moths emerging from wheat and corn each year. These results suggest that there is significant variation in susceptibility to Bt toxins among H. armigera populations derived from different host crops. Alternate crops, such as corn, that maintain Bt susceptible populations of H. armigera could be used as refugia to minimize the evolution of resistance to Bt cotton.  相似文献   

2.
Bollgard® and BollgardII® cotton cultivars were evaluated for their efficacy for control of bollworms and their effects on sucking insects and the abundance of natural enemies under bollworm insecticide protected and non-insecticide protected field conditions during the 2004 and 2005 cropping seasons. Bollgard cultivars are genetic transforms that produce Cry1Ac toxins from Bacillus thuringiensis (Bt) to control American bollworm, Helicoverpa armigera. Second generation BollgardII cultivars contain 2 toxins, Cry1Ac and Cry2Ab, and are more effective in controlling a broader range of caterpillar species. Bollgard cultivars were free of H. armigera damage until harvest under insecticide protected as well as non-protected conditions. Both BollgardII and Bollgard cultivars were infested with larvae of spotted bollworm, Earias vitella, and spiny bollworm, Earias insulana, at later crop growth stages. Neither BollgardII nor Bollgard cultivars were free of square (fruiting body), open boll and loculi damage. Bollworm damage did not reach economic threshold levels up to harvest. Densities of sucking insects (Amrasca biguttula biguttula, Bemisia tabaci, Aphis gossypi, and Thrips tabaci), of the foliage feeder Myllocerus undecimpustulatus and of predators (Chrysoperla spp., Orius spp., Coccinella spp., Brumus spp., Vespa spp., Lycosa spp., and Aranews spp.) were similar on Bollgard, BollgardII and conventional cultivars. The time of the first appearance of bollworms, sucking insects and predators on Bt cotton did not vary from conventional cotton varieties. Insecticidal protection based on economic threshold levels resulted in significant reductions in bollworm damage on conventional cultivars.  相似文献   

3.
Bacillus thuringiensis (Bt) transgenic cotton has shown changes in vegetative and reproductive growth characteristics. The objective of this study was to investigate the physiological changes in nitrogen metabolism that related closely to growth in Bt cotton cultivars. The study was undertaken on two Bt transgenic cotton cultivars and their parents, one conventional (Xingyang 822) and recurrent parent (Sumian No. 9), the other a hybrid (Kumian No. 1) and female parent (Yumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China.In the 2001 study, the results indicated that the Bt cotton cultivars (during peak reproductive growth) possessed greater leaf N, free amino acid and soluble protein than their parents. The biggest increase of total nitrogen was at peak boll period, with 36 and 19% increase for Kumian No. 1 and Xingyang 822, respectively. Similar results were found for free amino acid and soluble protein content. Further in 2002, the nitrate reductase activity increased dramatically at peak squaring and early boll open period, the biggest increase at early boll open period, with Kumian No. 1 and Xingyang 822 exhibiting 88 and 61% greater activity than their parents, respectively. The biggest increase in glutamic-pyruvic transaminase activity was at peak boll period, with Kumian No. 1 and Xingyang 822 having 39 and 29% higher activity than their parents, respectively. However, protease activity of Bt cultivars reduced significantly before flowering and early boll open period, the biggest decrease was before the flowering period. The results suggest that the Bt cotton cultivars have a more intense leaf nitrogen metabolism than their parents during reproductive development. The enhanced N metabolism may lead to excessive vegetative growth. Cultural practices should therefore be aimed at reducing leaf nitrogen metabolic strength and keeping the balance of vegetative and reproductive growth.  相似文献   

4.
Corn rootworm (Diabrotica spp.) has become the most concern and widespread insect pest of corn (Zea mays L.) production in North America. Two field experiments were conducted to assess the agronomic and yield performance of transgenic rootworm trait, Bacillus thuringiensis (Bt) Cry3Bb, seed-coating treatment, and a soil-applied insecticide under natural corn rootworm infestation. Experiment 1 compared a conventional corn hybrid with and without insecticide (Force 3G) with its near isoline Bt hybrid from 2003 to 2005, on a clay loam soil. Experiment 2 investigated the same treatments as in Experiment 1 plus an additional seed-coated Poncho treatment on a sandy loam in 2004 and 2005. Rootworm population before the crop anthesis, root node injury and root:shoot dry weight ratio during the early grain filling stage, and stalk lodging and grain yield were determined. Our data showed that rootworm population diminished over the 3 years owing to rootworm displacement and adverse weather conditions. At the clay loam site, both Force 3G and the Bt hybrid significantly reduced the larval populations, root injury and lodging score, and increased root:shoot ratio. Over the 3 years, grain yields of the Bt hybrid were 11–66% greater than the untreated non-Bt isoline hybrid; yield of the non-Bt hybrid treated with Force 3G was also significantly greater than the same untreated non-Bt hybrid in 2 of 3 years. Despite less root node injury in the first rows of non-Bt plants adjacent to the Bt plots was observed, yield benefit of this effect remained to be proven. On sandy loam soil, the larval population was very low and there were no differences in root node injury and plant lodging among all the four treatments in either 2004 or 2005. The yield of the Bt hybrid was up to 10% greater than its non-Bt isoline hybrid treated or not with an insecticide in 1 year. Our data showed that Bt rootworm seed technology was effective to control the rootworm larvae and protected grain yield under severe infestation. Furthermore, our data suggest that some of the gain in Bt hybrid yield may be attributed to the genetic transformation as observed in sandy loam soil experiment. In all cases, corn producers should be aware of the pest history, rootworm pressure in relation to economic threshold, soil type and the expected cost-to-benefit ratio before deciding to adopt any protective measures.  相似文献   

5.
Transgenic Bt (Bacillus thuringiensis) cotton has been effectively used to control the cotton bollworm, Helicoverpa armigera (Hübner) in China. However, in recent years, following the wide commercialization of Bt cotton in northern China there have been frequent outbreaks of the non-target pest Apolygus lucorum (Meyer-Dür). To clarify how transgenic cotton contributes to these outbreaks, a four-year field investigation of population dynamics and laboratory life table studies were carried out from 2007 to 2010 to evaluate the impact of two transgenic cotton cultivars (SGK321 expressing Cry1Ac + CpTI and GK12 expressing Cry1Ac) and their corresponding parental non-transgenic lines (Shiyuan321 and Simian3) on A. lucorum. There were no significant differences in the population densities of A. lucorum found in Bt cotton and non-Bt cotton plots, whether one compared those that had received insecticide treatments or those that had not. However, population densities of A. lucorum were significantly lower in pesticide treated plots than in controls. Furthermore, there were no significant differences in the net reproductive rates, generation times or intrinsic rates of increase of A. lucorum when reared on either Bt or non-Bt cotton cultivars. These results suggest that Bt cotton has no direct positive or negative effects on the biology of A. lucorum, so the most logical explanation for the observed outbreaks is the decrease in pesticide applications following the commercial release of Bt cotton.  相似文献   

6.
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (−9.44 ± 0.80 g and −23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.  相似文献   

7.
The Mediterranean corn borer, Sesamia nonagrioides Lefèbvre, is a key pest of corn and a main target of Bacillus thuringiensis (Bt) corn in Northeast Spain. Trends for future biotechnology crops indicate that Bt, non-Bt, and stacked corn varieties with metabolic pathways for vitamin-increased traits could coexist in same region. Knowledge of the oviposition response of gravid females of S. nonagrioides to these different varieties could be extremely important for managing strategies aimed for delaying resistance development. In dual-choice assays, we examined the host preference of gravid females of S. nonagrioides for four corn varieties: a new transgenic corn with increased vitamin levels, its near isogenic counterpart (M37W), a Bt corn plant, and its near isogenic counterpart. Olfactory cues were the predominant ones when gravid females looked for a suitable host to lay eggs, and no synergistic effects were observed when both visual and olfactory cues were present. When the plant was visible, the females preferred the odors emitted by the nontransgenic to its multivitamin transgenic counterpart and when they only could detect the volatiles they also preferred the nontransgenic M37W variety to the Bt corn variety. If gravid females are less attracted to corn with an increased level of vitamins, this could impact insect resistance management and the value of refuge plants, if such traits are stacked with an insect resistance trait.  相似文献   

8.
A field study was carried out to quantify the compensation capacity of Bacillus thuringiensis (Bt)-transgenic cotton to simulated damage by manually removing squares during the early growing season in 2004 and 2005 in combination with CO2 levels (ambient CO2 and elevated CO2). Treatments included: initial squares were wholly (100%) removed manually for 1 week (i.e., SR1 treatment) and for 2 consecutive weeks (i.e., SR2 treatment). Plant leaf area was measured every 2 weeks, and plant root, stem, leaf, shatters, boll dry weight and lint yield and maturity were measured at harvest. Significantly higher leaf area per plant was observed on each sampling date for SR1 and SR2 treatments compared with control (SR0) treatment in 2004 and 2005 under elevated CO2. Significantly higher lint yield and maturity were observed for SR0, SR1 and SR2 treatments under elevated CO2 in 2004 and 2005. CO2 concentration and square removal significantly affected plant lint yield and maturity. Moreover, the interaction between CO2 concentration × square removal had a significant effect on plant leaf dry weight, lint yield and maturity. Our results indicated that transgenic cotton plants can compensate for the manual removal of 100% of the initial squares for 1 and 2 weeks under ambient and elevated CO2.  相似文献   

9.
K. Wu  W. Li  H. Feng  Y. Guo 《Crop Protection》2002,21(10):997-1002
Lygus lucorum Meyer-Dür, Adelphocoris fasciaticollis Reuter and Adelphocoris lineolatus (Goeze) (Hemiptera: Miridae) are important secondary insect pests in cotton fields in northern China. The seasonal dynamics of their mixed populations on a transgenic variety expressing the insecticidal Bt protein Cry1A, and a cotton line expressing proteins of Cry1A and CpTI (cowpea trypsin inhibitor gene) were compared to seasonal dynamics on similar but non-transgenic varieties from 1998 to 2001. No significant differences were detected between population densities of these bugs on unsprayed normal cotton and unsprayed transgenic cotton. However, mirid damage on unsprayed transgenic cotton was significantly higher due to a reduced number of insecticide sprays against Helicoverpa armigera compared with the number of sprays in the normal cotton. This suggests that the mirids have become key insect pests in transgenic cotton fields, and that their damage to cotton could increase further with the expansion of the area planted to transgenic cotton if no additional control measures are adopted.  相似文献   

10.
This paper documents the historical development of resistance of the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae) to Bt maize (Zea mays L.). This pest was one of the first to evolve resistance to Bt maize expressing Cry1Ab protein. A time-line of events and contributing factors are presented, from the commencement of efficacy testing through to the present situation, where the Cry1Ab toxin has lost its efficacy against B. fusca at many localities throughout the maize producing region, and single-gene Bt maize events often require insecticide treatments for which farmers are compensated. Significant levels of pest survival on Bt maize was observed in the first season after commercial release in 1998 and confirmed seven years later. Reduced selection pressure on the target pest is the objective of insect resistance management (IRM), and strategies to accomplish this should receive highest priority. Where resistance is prevalent, the only viable options to reduce selection pressure are withdrawal of the product and/or enforcement of high-dose/refuge requirements. The latter action may however be of no value under conditions where resistance is prevalent, since the value of refugia to an IRM strategy may be compromised. Remedial actions taken in South Africa included the propagation and enforcement of refuge compliance followed by the release of pyramided maize hybrids in 2011. These pyramids combine Cry1A.105 and Cry2Ab2 toxin-producing transgenes, replacing the ineffective single-transgene. However, it remains uncertain if cross-resistance occurs between Cry1A.105/Cry2Ab2 and the closely related Cry1Ab toxin, and for how long this pyramided event will endure. Cultivation of Cry1Ab-expressing hybrids continues in areas where resistance levels have been confirmed to be high. In retrospect, this case provides lessons regarding IRM, not only in South Africa, but wherever Bt crops are being introduced.  相似文献   

11.
Field corn, Zea mays L., plants expressing Cry1Ab and Cry1F insecticidal crystal (Cry) proteins of Bacillus thuringiensis (Bt) Berliner are planted on considerable acreage across the Southern region of the United States. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an economically important pest during the mid-to-late season on non-Bt and some commercial Bt corn hybrids. The objective of this study was to quantify foliar injury and survivorship of fall armyworm on transgenic corn lines expressing Cry1Ab or Cry1F Bt proteins. Corn lines/hybrids expressing Cry1Ab, Cry1F, and a conventional non-Bt cultivar were evaluated against artificial infestations of fall armyworm in field trials. Larvae (second instars) of fall armyworm were placed on corn plants (V8-V10 stages). Leaf injury ratings were recorded 14 d after infestation. Hybrids expressing Cry1F had significantly lower feeding injury ratings than non-Bt corn plants. Development and survivorship of fall armyworm on Bt corn lines/hybrids were also evaluated in no-choice laboratory assays by offering freshly harvested corn leaf tissue to third instars. Transgenic corn hybrids expressing Cry1Ab or Cry1F significantly reduced growth, development, and survivorship of fall armyworm compared to those offered non-Bt corn tissue. However, 25-76% of third instars offered Bt corn leaf tissues successfully pupated and emerged as adults. These results suggest Cry1Ab has limited effects on fall armyworm; whereas Cry1F demonstrated significant reductions in foliar injury and lower survivorship compared to that on non-Bt corn tissues. Although fall armyworm is not considered a primary target for insect resistance management by the U.S. Environmental Protection Agency, these levels of survivorship could impact selection pressures across the farmscape, especially when considering that transgenic Bt cotton cultivars express similar Cry (Cry1Ac or Cry1F) proteins.  相似文献   

12.
Summary The effects of the leaves of five plant species, one from each of the generaAmbrosia, Anemone, Eupatorium, Eucalyptus andLantana, on potato tuber moth were investigated under indigenous storage conditions at the Central Potato Research Station, Shillong (1800 m above sea level). Their action was compared with that of a biological insecticide (spores ofBacillus thuringiensis), a chemical insecticide (carbaryl), and an untreated control. The data collected after six months storage on tuber damage, sprout damage and the rotting indicated that the leaves ofLantana aculeata provided most protection to the tubers, reducing damage from over 70% in the check to below 5%, and sprout damage from over 45% to below 3%. Next best wasEucalyptus globulus followed byB. thuringiensis. They may be used on tubers stored for table use or for seed as they had no adverse effect on germination or on the yield of a subsequent crop.  相似文献   

13.
Salinity, waterlogging and a combination of both stresses are severe threats to plant growth, development and yield of field-grown cotton (Gossypium hirsutum L.), but their individual or combined effects on insecticidal efficacy of Bacillus thuringiensis (Bt) transgenic cotton and the underlying mechanisms are not well understood. In the present study, two cotton cultivars (33B and SCRC17) containing the Cry1Ac insecticidal protein gene were planted in 10 L pots filled with soil and allowed to grow in a greenhouse. The potted plants were either treated with NaCl (5 mg/g, w/w), waterlogging, or a combination of both stresses at the three true-leaf stage, and levels of total soluble protein, Bt insecticidal protein, gossypol and the control efficacy as indicated by mortality of bollworm larvae were examined at 7-day intervals after stress. Waterlogging and a combination of salinity and waterlogging reduced total protein content by 40–46% and 45–65% and Bt protein content by 38–50% and 45–72% from 7 to 21 days after stress, relative to the non-stressed control, respectively. The control efficacy was significantly reduced by either waterlogging or the combined stress. Regression analysis indicated that Bt protein content was correlated to total soluble protein content (R2 = 0.7677*), while Bt cotton efficacy was correlated to Bt protein level (R2 = 0.7917**). Salinity reduced Bt protein by 11–22% and total soluble protein by 5.7–7.2% from 7 to 21 days after NaCl stress, but did not result in reduction in control efficacy. It is concluded that reduced bollworm control efficacy under waterlogging or the combined stress could be mainly attributed to the declined levels of Bt protein, which is closely associated with the inhibited nitrogen metabolism by stresses. As one of the secondary compounds that are toxic to pests, increases in gossypol may be involved in maintaining the efficacy when Bt protein level was reduced under salinity.  相似文献   

14.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major pest of many crops and a cross-crop target of transgenic maize, cotton, and soybean containing Bacillus thuringiensis (Bt) genes. Some of the current Bt maize products for controlling lepidopteran species contain the Bt event MON 89034. The objective of this study was to determine the frequency of resistance alleles in field populations of S. frugiperda collected from Louisiana and Florida, U.S. to Cry1A.105, one of the two Bt genes in MON 89034. A total of 150 F2 two-parent families of S. frugiperda were established using single-pair mating of field-collected individuals in 2011, which included 79 families from two locations in Louisiana and 71 families from one location in Florida. F2 screen was conducted to detect resistance alleles in these families to Cry1A.105 protein in maize plants. Four out of the 79 Louisiana and 14 out of the 71 Florida families were identified to possess resistance alleles to the Cry1A.105 maize plants. Thus, the corresponding frequency of resistance alleles to Cry1A.105 maize was estimated to be 0.0158 with a 95% credibility interval (CI) of 0.0052–0.0323 for the Louisiana populations and 0.0559 with a 95% CI of 0.0319–0.0868 for the Florida populations. The resistant families survived on whole Cry1A.105 maize plants and demonstrated a significant level (>116-fold) of resistance to the Cry1A.105 protein in a diet-incorporated bioassay. These findings suggest that resistance allele frequency in S. frugiperda to single-gene Cry1A.105 maize in the U.S. southeast region apparently is not rare, most likely due to the selection of Cry1F resistance and its cross-resistance to Cry1A.105.  相似文献   

15.
The mealybug Phenacoccus solenopsis is a destructive pest of cotton with the potential to develop resistance to most chemical classes of insecticides. Six populations of P. solenopsis from cotton crops at six different locations in Pakistan were evaluated for resistance to selected organophosphate and pyrethroid insecticides. Resistance ratios (RRs) at LC50 were in the range of 2.7–13.3 fold for chlorpyrifos, 11.6–30.2 fold for profenofos and for the three pyrethroids tested were 10.6–46.4 for bifenthrin, 5.8–25.2 for deltamethrin and 4.1–25.0 for lambda-cyhalothrin. This is the first report of resistance to organophosphate and pyrethroid insecticides in Pakistani populations of P. solenopsis. Regular insecticide resistance monitoring programs are needed to prevent field control failures. Moreover, integrated approaches including the judicious use of insecticides and rotation of insecticides with different modes of action are needed to delay the development of insecticide resistance in P. solenopsis.  相似文献   

16.
Brown stink bugs, Euschistus servus, are an important early-season pest of field corn in the southeastern United States. Feeding in the early stages of corn development can lead to a number of growth deformities and deficiencies and, ultimately, a reduction in yield. An observational and two experimentally manipulated trials were conducted in 2017 and 2018 to 1) determine optimal timing for assessing brown stink bug damage, 2) assess the level of damage from which yield compensation can occur, and 3) examine the relationship between brown stink bug density and early-season damage and yield. Fields were identified with infestations of brown stink bugs and a damage rating system for early stages of corn was established. Varying rates of brown stink bug densities were introduced using field cages and damage was assessed throughout the season. The density and duration of stink bug infestations were critical factors for damage potential, with each day of active feeding per plant resulting in a loss of ~14 kg/ha in yield. The level of damage in early stages of corn was categorized into easily identifiable groups, with only the most severe damage leading to a reduction in yield. Moderate and minimal feeding damage did not result in yield loss. This study emphasizes the need for early and frequent scouting of corn to determine the risk of damage and yield loss from brown stink bugs. Results from this study can be used to help develop management programs for brown stink bugs in the early vegetative stages of field corn.  相似文献   

17.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

18.
19.
In-field product performance assessments are an essential component of corn rootworm (Diabrotica spp.; CRW) resistance management plans for transgenic maize (Zea mays L.) products expressing proteins derived from the bacterium Bacillus thuringiensis (Bt). The goal of a successful field sampling program is to accurately characterize in-field product performance while also minimizing resource demand, as collection of maize root samples to evaluate CRW injury can present resource challenges such as labor intensiveness, potential safety issues, and a limited time window available for sampling. A resource-efficient sequential sampling plan was developed that utilizes data-driven root injury threshold values derived from benchmark product performance data for both single and pyramided Bt maize traits for CRW control. This sequential sampling methodology incorporates unbiased sampling and controlled false positive and false negative error rates, enabling accurate assessment decisions to be made with efficient resource use. Our proposed approach enables systematic and effective classification of in-field Bt maize product performance, with applications to other CRW control technologies besides Bt maize products.  相似文献   

20.
《Crop Protection》1988,7(3):153-160
Field trials in Malawi investigated the effect of swath width, flow rates, voltage and dosage on insect control and yield of seed cotton when applying water-based insecticide formulations to cotton at very-low-volume (VLV) rates through a hand-held spinning-disc sprayer. Halving the dosage of DDT and carbaryl gave poorer control of Heliothis and Earias and low yields. A flow rate of 1·0 ml/s generally gave significantly better insect control, while yield of seed cotton was significantly lower at 1·6 ml/s than at the other rates in only one season. Spraying at high (12−6 V) and low (6−3·5 V) voltage resulted in significant but inconsistent control of Diparopsis and Heliothis, but control of Bemisia, Aphis and Paurocephala nymphs was significantly better at the higher voltage in one season only. At Ngabu, spraying at the higher voltage gave significantly poorer Heliothis control and lower yields in moderately high infestations and poorer control of Bemisia, Aphis and Tetranychus. Only Earias control was significantly better at the narrowest swath. Knapsack spraying gave better Aphis control but yields were similar between the two techniques except in the first year at Ngabu when the knapsack yield was higher. Treated cotton gave higher yields than untreated cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号