首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Oxidative insults, whether over-excitation, excessive release of glutamate or ATP caused by stroke, ischemia or inflammation, exposure to ionizing radiation, heavy-metal ions or oxidized lipoproteins may initiate various signaling cascades leading to apoptotic cell death and neurodegenerative disorders. Among the various reactive oxygen species (ROS) generated in the living organism, hydroxyl and peroxynitrite are the most potent and can damage proteins, lipids and nucleic acids. It appears that some natural antioxidants (tocopherol, ascorbic acid and glutathione) and defense enzyme systems (superoxide dismutase, catalase and glutathione peroxidase) may provide some protection against oxidative damage. Recent findings indicate several polyphenols and antioxidant drugs (probucol, seligilline) are effective in protecting the cells from ROS attack. Further development of these antioxidant molecules may be of value in preventing the development of neurodegenerative diseases.  相似文献   

2.
Two series of studies were made to assess probucol medicines (lipomal, "Alkaloid"; fenbutol "Akrikhin") effect on clinical symptoms, lipid metabolism, primary and secondary products of lipid peroxidation, activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase) in atherosclerotic patients with hyperlipidemia type IIA and IIB. In both series probucol reduced frequency of anginal attacks, content of total cholesterol and LDL cholesterol. HDL cholesterol remained unchanged or reduced insignificantly. Lipoperoxides and malonic dialdehyde levels in plasma progressively lowered against activation of antioxidant enzymes. These biochemical parameters returned to initial values within 3 months since the drug discontinuation. It is evident that antiatherogenic effect of probucol is due to indirect activation of natural defense systems responsible for enzymic detoxication of active oxygen forms and lipoperoxides rather than to direct interaction of this synthetic antioxidant with lipid radicals.  相似文献   

3.
Reactive oxygen species such as superoxides, hydrogen peroxide (H2O2) and hydroxyl radicals have been suggested to be involved in the catalytic action of nitric oxide synthase (NOS) to produce NO from L-arginine. An examination was conducted on the effects of oxygen radical scavengers and oxygen radical-generating systems on the activity of neuronal NOS and guanylate cyclase (GC) in rat brains and NOS from the activated murine macrophage cell line J774. Catalase and superoxide dismutase (SOD) showed no significant effects on NOS or GC activity. Nitroblue tetrazolium (NBT, known as a superoxide radical scavenger) and peroxidase (POD) inhibited NOS, but their inhibitory actions were removed by increasing the concentration of arginine or NADPH respectively, in the reaction mixture. NOS and NO-dependent GC were inactivated by ascorbate/FeSO4 (a metal-catalyzed oxidation system), 2'2'-azobis-amidinopropane (a peroxy radical producer), and xanthine/xanthine oxidase (a superoxide generating system). The effects of oxygen radicals or antioxidants on the two isoforms of NOS were almost similar. However, H2O2 activated GC in a dose-dependent manner from 100 microM to 1 mM without significant effects on NOS. H2O2-induced GC activation was blocked by catalase. These results suggested that oxygen radicals inhibited NOS and GC, but H2O2 could activate GC directly.  相似文献   

4.
Calcium dobesilate, a vascular protective agent, was tested in vitro for its scavenging action against oxygen free radicals. Calcium dobesilate was as potent as rutin to scavenge hydroxyl radicals (IC50 = 1.1 vs 0.7 microM, respectively). It was also able to scavenge superoxide radicals, but with 23 times less potency than rutin (IC50 = 682 vs 30 microM, respectively). Calcium dobesilate significantly reduced platelet activating factor (PAF)-induced chemiluminescence in human PMN cells and lipid peroxidation by oxygen free radicals in human erythrocyte membranes, although these actions required calcium dobesilate concentrations > or = 50 microM. Finally, in cultured bovine aortic endothelial cells, magnesium dobesilate reduced the increase in cytosolic free calcium induced by hydrogen peroxide and inhibited phenazine methosulfate-induced cell potassium loss. In conclusion, calcium dobesilate was effective in scavenging hydroxyl radicals in vitro, at therapeutically relevant concentrations. Conversely, higher concentrations of the compound were required to scavenge superoxide radicals or to protect the cells against the deleterious effects of intracellular reactive oxygen species. Further studies in vivo are required to determine if these antioxidant properties of calcium dobesilate can play a role in its vascular protective mechanisms.  相似文献   

5.
Combined stimulation, by superoxide ions generated by the xanthine-xanthine oxidase reaction, and platelet-activating factor (PAF), induced cell differentiation of rat monocytic leukemia cells (c-WRT-LR) to macrophage-like mature cells. Monitoring of cytochrome c reduction revealed that PAF stimulation induced the release of superoxide ions from c-WRT-LR. To further investigate the effect of superoxide ions in the autocrine or paracrine mechanism in cell differentiation, molecular species of the oxygen radicals under PAF stimulation were examined using the EPR spin trap, 5,5'-dimethyl-1-pyrroline N-oxide (DMPO). PAF and/or phorbol myristate acetate caused the formation of EPR spectra, a combination of DMPO/.OOH and DMPO/.OH. Since both spectra were diminished in the presence of superoxide dismutase, it was concluded that DMPO/.OH was derived from superoxide ions. Mannitol and catalase suppressed cell differentiation induced by combined stimulation with PAF and oxygen radicals generated by the xanthine-xanthine oxidase reaction. Taken together, these results suggest that hydroxyl radicals generated by Fenton reaction from H2O2 may be involved in the mechanism of cell differentiation in rat monocytic leukemia cells.  相似文献   

6.
In lung diseases such as chronic obstructive pulmonary disease (COPD) or cystic fibrosis, the activation of phagocytic cells produces high amounts of cytotoxic reactive oxygen species (ROS) that are partly implicated in the pathogenic process. In this study, the ex vivo antioxidant activity of nacystelyn (NAL), a recently developed mucoactive thiol-containing agent, was investigated using the respiratory burst of human blood polymorphonuclear neutrophils (PMNs). The ROS generation was induced by serum-opsonized zymosan and assessed with luminol- and lucigenin-enhanced chemiluminescence (ECL). The activity of NAL was compared with N-acetylcysteine (ACC) and captopril, other thiol-containing pharmacological agents having documented antioxidant properties. The three drugs significantly inhibited the ECL response of activated PMNs in the presence of luminol, a luminogenic agent which mostly reflects the production of hydroxyl and hypohalite radicals. NAL was more efficient than the other two drugs: the concentrations producing a 50% inhibition (IC50) of total luminol-ECL were 290 microM, 1580 microM and 760 microM for NAL, ACC and captopril, respectively. The inhibition of the lucigenin-ECL response of activated PMNs was less marked for all compounds suggesting a poorer reactivity with superoxide radicals. These findings demonstrate that NAL, at concentrations obtainable in vivo by inhalation, impairs the PMNs chemiluminescence response related to hydroxyl and hypohalite radicals production. As those radicals are highly cytotoxic, NAL appears as a promising agent in the prevention of oxidative lung damage caused by an active inflammatory response.  相似文献   

7.
8.
The destruction of trichloroethylene (TCE) and perchloroethylene (PCE) dense nonaqueous phase liquids (DNAPLs) using catalyzed H2O2 propagations (CHP), an in situ chemical oxidation process based on Fenton’s reagent, was investigated in batch, bench scale reactors. TCE and PCE masses were quantified over time in DNAPLs, aqueous phases, and off gasses, and the rate of DNAPL destruction was compared to the corresponding rate of gas purge dissolution. TCE and PCE DNAPLs were rapidly destroyed by CHP at 1.7 and 4.4 times the rate of gas purge dissolution, respectively. Use of reactions in which a single reactive oxygen species was generated demonstrated that both hydroxyl radical and superoxide were involved in TCE and PCE DNAPL destruction, with superoxide having the major role in the destruction of the DNAPLs. These results show that DNAPLs composed of contaminants highly reactive with hydroxyl radical, such as TCE and PCE, are destroyed primarily through reaction with superoxide.  相似文献   

9.
Destruction of a dense nonaqueous phase liquid (DNAPL) by soluble iron (III)-catalyzed and pyrolusite (β-MnO2)-catalyzed Fenton’s reactions (hydrogen peroxide and transition metal catalysts) was investigated using carbon tetrachloride (CT) as a model contaminant. In the system amended with 5 mM soluble iron (III), 24% of the CT DNAPL was destroyed after 3 h while CT dissolution in parallel fill-and-draw systems was minimal, indicating that CT was degraded more rapidly than it dissolved into the aqueous phase. Fenton’s reactions catalyzed by the naturally occurring manganese oxide pyrolusite were even more effective in destroying CT DNAPLs, with 53% degradation after 3 h. Although Fenton’s reactions are characterized by hydroxyl radical generation, carbon tetrachloride is unreactive with hydroxyl radicals; therefore, a transient oxygen species other than hydroxyl radicals formed through Fenton’s propagation reactions was likely responsible for CT destruction. These results demonstrate that Fenton-like reactions in which nonhydroxyl radical species are generated may provide an effective method for the in situ treatment of DNAPLs.  相似文献   

10.
BACKGROUND: In atherosclerosis, both reductions and elevations in plasma levels of antioxidants have been reported. This study investigated total antioxidant capacity of plasma from subjects with atherosclerotic disease. MATERIALS AND METHODS: The study population consisted of 48 men with or without carotid atherosclerosis. At baseline (1990) carotid arteries were evaluated by duplex sonography and plasma samples were obtained for testing antioxidant capacity by two different test systems. One assay system used neutrophils from healthy volunteers as a source of oxygen free radicals activating the non-fluorescent dichlorofluorescin diacetate in the presence of antioxidant containing plasma from study subjects. In the other test system, total plasma antioxidants were detected colorimetrically by using 2,2'-azino-di-(3-ethylbenzthiazoline sulphonate), metmyoglobin and superoxide in the presence of plasma. Carotid arteries were re-evaluated for the development of new plaques 5 years later (1995). RESULTS: Increased baseline total antioxidant capacity of plasma was significantly associated with the development of new atherosclerotic lesions during a period of 5 years. CONCLUSIONS: Endogenous antioxidant capacity of plasma is increased in patients with active atherosclerotic disease. As scavenging of oxygen free radicals is thought to protect from atherogenesis, elevated antioxidative capacity may represent an adaptive mechanism.  相似文献   

11.
BACKGROUND AND OBJECTIVE: The purpose of this study was to determine irradiation parameters of a 780 nm low power CW diode laser (6.5 mW) leading to enhanced proliferation of cultured normal human keratinocytes (NHK). The possible role of reactive oxygen species (ROS) in this response was evaluated. STUDY DESIGN/MATERIALS AND METHODS: NHK were exposed to a single dose of 0 to 3.6 J/cm2 (0-180 sec) of irradiation. Proliferation parameters studied were: incorporation of 3H-thymidine during 6-24 hr following irradiation; percentage of dividing cells and number of cells, 24 hr and 48 hr following irradiation, respectively. RESULTS: Proliferation of NHK exposed to 0.45-0.95 J/cm2 was significantly enhanced by 1.3-1.9-folds relative to sham-irradiated controls, as inferred from parameters studied. Exposure to other energy densities was considerably less effective in enhancing proliferation parameters. Added enzymatic antioxidants, superoxide dismutase or catalase, scavenging superoxide anions and H2O2, suppressed this enhanced proliferation. Added scavengers (alpha-tocopherol acetate, scavenging lipid peroxidation, or sodium azide, histidine, mannitol, scavenging singlet oxygen, superoxide anions, and hydroxyl radicals, respectively), or N-acetyl cysteine, the thiol-reducing agent, suppressed the response, but to different extents. CONCLUSIONS: The results indicate that 780 nm low power diode laser irradiation enhanced keratinocytes proliferation in vitro, with an apparent involvement of ROS in this response, and comparably, might be used to promote their proliferation in vivo to enhance wound healing.  相似文献   

12.
The data obtained from the author's laboratory were used to make this review. The author's classification of free radicals, approaches, the origin and metabolism of primary radicals, the contribution of iron ions to the production of secondary radicals and the mechanisms of antioxidative protection of cells and tissues from damage are considered. According to the classification proposed, the radicals may be divided into primary (superoxide, semiquinones and nitric oxide), secondary (hydroxyl and lipid radicals) and tertiary (radicals of antioxidants). The primary radicals are formed by enzymatic systems and perform biologically important functions. The secondary radicals are formed from hydroperoxides in the reactions of divalent iron ions and damage to cell structures. In the cells and blood plasma, there is a complicated system of antioxidants that prevent the production of secondary radicals. All antioxidants may be arbitrarily divided into water-soluble and hydrophobic. The first group involves the enzymes catalase and glutathione peroxidase, iron ion chelators (such as ceruloplasmin and transferrin in the blood and carnosine in other tissues), and, probably, hydroxyl radical traps, such as uric acid and ascorbate. The hydrophobic antioxidants include primarily the free radical traps alpha-tocopherol, flavonoids, and carotenes. Studies of lipid peroxidation kinetics in the membranous structures, carried out by chemiluminescence and mathematical modeling of the reactions have shown that the radicals of antioxidants (such as alpha-tocopherol) enter the further reactions in the lipid phase, including those with lipid hydroperoxides.  相似文献   

13.
We studied the effects of oxygen free radicals on the ATP-sensitive potassium channel (KATP channel) of guinea-pig ventricular myocytes. Single KATP channel currents were recorded from inside-out patches in the presence of symmetrical K+ concentrations (140 mM in both bath and pipette solutions). Reaction of xanthine oxidase (0.1 U/ml) on hypoxanthine (0.5 mM) produced superoxide anions (.O2-) and hydrogen peroxide (H2O2). Exposure of the patch membrane to.O2- and H2O2 increased the opening of KATP channels, but this activation was prevented by adding 1 microM glibenclamide to the bath solution. In the presence of ferric iron (Fe3+: 0.1 mM), the same procedure produced hydroxyl radicals (.OH) via the iron-catalysed Haber-Weiss reaction.OH also activated KATP channels; however, this activation could not be prevented by, even very high concentrations of glibenclamide (10 microM). These different effects of glibenclamide suggest that the mode of action of these oxygen free radicals on KATP channels is different and that.OH is more potent than.O2-/H2O2 in activating KATP channels in the heart.  相似文献   

14.
Free radicals having oxidizing properties are produced in vivo. The monoelectronic reduction of dioxygen generates the superoxide radical (.O2-) which, according to the experimental conditions, behaves as a reducing or an oxidizing agent. Its dismutation catalyzed by superoxide dismutases (SODs) produces hydrogen peroxide. The latter reacting with .O2- in the presence of "redox-active" iron produces highly aggressive prooxidant radicals, such as the hydroxyl radical (.OH). This production is prevented through intracellular enzymes (catalase and glutathione peroxidases) which destroy the hydrogen peroxide involved in the biosynthesis of .OH. An increase in SODs activity without parallel enhancement of the enzymes destroying H2O2 may lead to important cellular disturbances. Other enzymes acting with glutathione as substrate (especially glutathione S-transferases) contribute to the antioxidant defence. The same holds true for selenium and zinc which act mainly through their involvement in the structure of both antioxidant enzymes and nonenzymatic proteins. Another line of antioxidant defence is represented by substrates acting as chain-breaking antioxidants in destructive processes linked to prooxidant free radicals, such as lipid peroxidation. The main membranous antioxidant is alpha-tocopherol which is able to quench efficiently lipid peroxyl radicals. Its efficiency would be quickly exhausted if the tocopheryl radical formed during this reaction wouldn't be retransformed into alpha-tocopherol through the intervention of ascorbate and/or glutathione. Ubiquinol and dihydrolipoate also contribute to the membranous antioxidant defence, whereas carotenoids are mainly responsible for the prevention of the deleterious effects of singlet oxygen. An oxidative stress is apparent when the antioxidant defence is insufficient to cope with the prooxidant production.  相似文献   

15.
A series of substituted hydroxyphenylureas was synthesized, the chemical structure of which was designed based on structures of natural antioxidants, vitamin E (alpha-tocopherol) and uric acid. They exhibited high inhibitory activity against lipid peroxidation. In order to gain an insight into the mechanism of the inhibition reaction, we analyzed their structure-activity relationships quantitatively. Electronic and steric effects of substituents on the phenolic hydroxyl group were shown to be of importance in governing the inhibitory potency. An increase in the electron donating property of substituents toward the phenolic hydroxyl group enhanced the antioxidative activity by the stabilization of an electron-deficient radical-type transition state. The steric shielding by ortho-substituents stabilized the phenoxy radicals formed following the transition state. Derivatives having the carboxyl group were only weakly active presumably because of an intermolecular ion-dipole interaction of the phenolic hydroxyl group with the carboxylate anion which could retard the formation of the transition state.  相似文献   

16.
The effects of substituted catechols (3-methylcatechol, 4-methylcatechol, 4-nitrocatechol, and guaiacol) and trihydroxybenzenes (pyrogallol, propyl gallate, 1,2,4-trihydroxybenzene, and 1,3,5-trihydroxybenzene) on the synthesis of prostaglandin (PG)E2 and leukotriene (LT)B4 were tested in human A23187-stimulated polymorphonuclear leukocytes. The effects were related to their peroxyl-radical-scavenging (antioxidant), superoxide-scavenging (antioxidant), and superoxide-generating (prooxidant) properties. In general, compounds with hydroxyl groups in the ortho position increased PGE2/LTB4 ratio, and compounds with hydroxyl groups in the meta position decreased PGE2/LTB4 ratio. Catechols, which have hydroxyl groups in the ortho position, were the most potent peroxyl radical and superoxide anion scavengers. Trihydroxybenzenes (pyrogallol, 1,2,4-trihydroxybenzene, and 1,3,5-trihydroxybenzene) generated superoxide, whereas dihydroxybenzenes did not. Thus, the positions and number of hydroxyl groups seem to be the most important properties determining the action of phenolic compounds on PGE2/LTB4 ratio and their antioxidant/prooxidant activities.  相似文献   

17.
Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was speculated to play a role in preserving meningococci from the action of microbicidal oxygen free radicals produced in the context of host defense. A sodC mutant was constructed by allelic exchange and was used to investigate the role of Cu,Zn SOD in pathogenicity. Wild-type and mutant meningococci grew at comparable rates and survived equally long in aerobic liquid culture. The mutant showed no increased sensitivity to paraquat, which generates superoxide within the cytosol, but was approximately 1,000-fold more sensitive to the toxicity of superoxide generated in solution by the xanthine/xanthine oxidase system. These data support a role for meningococcal Cu,Zn SOD in protection against exogenous superoxide. In experiments to translate this into a role in pathogenicity, wild-type and mutant organisms were used in an intraperitoneal mouse infection model. The sodC mutant was significantly less virulent. We conclude that periplasmic Cu,Zn SOD contributes to the virulence of Neisseria meningitidis, most likely by reducing the effectiveness of toxic oxygen host defenses.  相似文献   

18.
There is currently much interest in the possibility that dietary antioxidants may confer protection from certain diseases, such as atherosclerosis and cancer. The importance of alpha-tocopherol (vitamin E) as a biological antioxidant is widely recognized. However, pro-oxidant properties of alpha-tocopherol have been observed in chemical systems, and it has been reported that the vitamin can induce tumor formation and act as a complete tumor promotor in laboratory animals. In the present communication, we find that alpha-tocopherol can act as a potent DNA-damaging agent in the presence of copper(II) ions, using a simplified, in vitro model. alpha-Tocopherol was found to promote copper-dependent reactive oxygen species formation from molecular oxygen, resulting in DNA base oxidation and backbone cleavage. Neither alpha-tocopherol nor Cu(II) alone induced DNA damage. Bathocuproine, a Cu(I)-specific chelator, and catalase inhibited the DNA damage, whereas free hydroxyl radical scavengers did not. The order of DNA cleavage sites was thymine, cytosine > guanine residues. Examinations using an oxygen electrode and cytochrome c indicate that molecular oxygen was consumed in the reaction of alpha-tocopherol and Cu(II) and that superoxide was formed. Stoichiometry studies showed that two Cu(II) ions could be reduced by each alpha-tocopherol molecule. Electron spin resonance spin-trapping investigations were then used to demonstrate that hydrogen peroxide interacts with Cu(I) to generate the reactive species responsible for DNA damage, which is either the hydroxyl radical or a species of similar reactivity. These findings may be of relevance to the tumorigenic properties of the vitamin reported in the literature. However, further studies are required to establish the significance of these reactions under in vivo conditions.  相似文献   

19.
Radiation chemistry can contribute to drug design by quantifying redox properties of drugs (useful parameters in quantitative structure-activity relationships), and where free radicals are suspected intermediates in drug action, radiation can be used to generate these putative species and help characterize relevant reactions. Steady radiolysis produces radicals at a readily-varied but quantified rate; pulse radiolysis with fast spectrophotometric and/or conductimetric detection enables the kinetic properties of radicals to be monitored directly. Using these methods, radical intermediates from drugs with specific cytotoxicity towards hypoxic cells have been shown to react rapidly with oxygen, a reaction probably responsible for the therapeutic differential. Radical oxidants from activated neutrophils include superoxide and hydroxyl radicals, and radiation-chemical methods have an important role to play in rational drug design to exploit such oxidative chemistry. Antioxidants can also be evaluated quantitatively by radiolysis methods; the conjugation reactions of thiyl radicals with thiolate and oxygen are now recognised to be major contributions of pulse radiolysis to thiol biochemistry.  相似文献   

20.
Polyhemoglobin-superoxide dismutase-catalase is designed to function as an oxygen carrier with antioxidant properties. This is based on cross-linking hemoglobin with superoxide dismutase and catalase (PolyHb-SOD-CAT). This study describes the structural and antioxidant properties of this solution. Our studies show that superoxide dismutase and catalase retain their enzymatic activity following glutaraldehyde polymerization with 8:1 and 16:1 glutaraldehyde:hemoglobin ratio. We have analyzed the optimal SOD/CAT ratios to prevent oxidation of hemoglobin in the presence of oxygen free radicals. The circulation half-life of crosslinked hemoglobin, SOD, and catalase in Sprague-Dawley rats correlates with the degree of polymerization as determined by high-performance molecular weight gel filtration. PolyHb-SOD-CAT decreases the formation of oxygen radicals compared with PolyHb in a rat intestinal ischemia-reperfusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号