首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
目的 以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法 首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果 实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 dB、0.18 dB、0.07 dB;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 dB、0.28 dB、0.16 dB。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论 本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。  相似文献   

2.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

3.
目的 随着深度卷积神经网络的兴起,图像超分重建算法在精度与速度方面均取得长足进展。然而,目前多数超分重建方法需要较深的网络才能取得良好性能,不仅训练难度大,而且到网络末端浅层特征信息容易丢失,难以充分捕获对超分重建起关键作用的高频细节信息。为此,本文融合多尺度特征充分挖掘超分重建所需的高频细节信息,提出了一种全局注意力门控残差记忆网络。方法 在网络前端特征提取部分,利用单层卷积提取浅层特征信息。在网络主体非线性映射部分,级联一组递归的残差记忆模块,每个模块融合多个递归的多尺度残差单元和一个全局注意力门控模块来输出具备多层级信息的特征表征。在网络末端,并联多尺度特征并通过像素重组机制实现高质量的图像放大。结果 本文分别在图像超分重建的5个基准测试数据集(Set5、Set14、B100、Urban100和Manga109)上进行评估,在评估指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上相比当前先进的网络模型均获得更优性能,尤其在Manga109测试数据集上本文算法取得的PSNR结果达到39.19 dB,相比当前先进的轻量型算法AWSRN(adaptive weighted super-resolution network)提高0.32 dB。结论 本文网络模型在对低分图像进行超分重建时,能够联合学习网络多层级、多尺度特征,充分挖掘图像高频信息,获得高质量的重建结果。  相似文献   

4.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

5.
目的 通过融合一组不同曝光程度的低动态范围(low dynamic range, LDR)图像,可以有效重建出高动态范围(high dynamic range, HDR)图像。但LDR图像之间存在背景偏移和拍摄对象运动的现象,会导致重建的HDR图像中引入鬼影。基于注意力机制的HDR重建方法虽然有一定效果,但由于没有充分挖掘特征空间维度和通道维度的相互关系,只在物体出现轻微运动时取得比较好的效果。当场景中物体出现大幅运动时,这些方法的效果仍然存在提升空间。为此,本文提出了空间感知通道注意力引导的多尺度HDR图像重建网络来实现鬼影抑制和细节恢复。方法 本文提出了一种全新的空间感知通道注意力机制(spatial aware channel attention mechanism, SACAM),该机制在挖掘通道上下文关系的过程中,通过提取特征通道维度的全局信息和显著信息,来进一步强化特征的空间关系。这有助于突出特征空间维度与通道维度有益信息的重要性,实现鬼影抑制和特征中有效信息增强。此外,本文还设计了一个多尺度信息重建模块(multiscale information reconstruction module, MIM)。该模块有助于增大网络感受野,强化特征空间维度的显著信息,还能充分利用不同尺度特征的上下文语义信息,来重构最终的HDR图像。结果 在Kalantari测试集上,本文方法的PSNR-L(peak signal to noise ratio-linear domain)和SSIM-L(structural similarity-linear domain)分别为41.101 3、0.986 5。PSNR-μ(peak signal to noise ratio-tonemapped domain)和SSIM-μ(structural similarity-tonemapped domain)分别为43.413 6、0.990 2。在Sen和Tursun数据集上,本文方法较为真实地重构了场景的结构,并清晰地恢复出图像细节,有效避免了鬼影的产生。结论 本文提出的空间感知通道注意力引导的多尺度HDR图像重建网络,有效挖掘了特征中对重构图像有益的信息,提升了网络恢复细节信息的能力。并在多个数据集上取得了较为理想的HDR重建效果。  相似文献   

6.
针对当前运动图像去模糊网络忽略了运动模糊图像的非均匀性,不能有效地恢复图像的高频细节及去除伪影等问题,在对抗网络基础上提出一种基于自适应残差的运动图像去模糊方法.在生成网络中构造由形变卷积模块和通道注意力模块组成的自适应残差模块.其中,形变卷积模块学习运动模糊图像特征的形变量,可以根据图像的形变信息动态调整卷积核的形状和大小,提高网络适应图像形变的能力.通道注意力模块对所提取的形变特征进行通道调整,获取更多的图像高频特征,增强恢复后图像的纹理细节.在公开的GOPRO数据集上进行实验,实验结果表明,该算法的峰值信噪比(PSNR)有较大的提升,能够重建出纹理细节丰富的高质量图像.  相似文献   

7.
目前, 大多数图像去雾算法忽视图像的局部细节信息, 无法充分利用不同层次的特征, 导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象, 针对这一问题, 提出结合密集注意力的自适应特征融合图像去雾网络. 该网络以编码器-解码器结构为基本框架, 中间嵌入特征增强部分与特征融合部分, 通过在特征增强部分叠加由密集残差网络与CS联合注意模块构成的密集特征注意块, 使网络可以关注图像的局部细节信息, 同时增强特征的重复利用, 有效防止梯度消失; 在特征融合部分构建自适应特征融合模块融合低级与高级特征, 防止因网络加深而造成浅层特征退化. 实验结果表明, 所提算法在合成有雾图像数据集和真实有雾图像数据集上均表现优异, 在SOTS室内合成数据集上的峰值信噪比和结构相似性分别达到了35.81 dB和0.9889, 在真实图像数据集O-HAZE上的峰值信噪比和结构相似性分别达到了22.75 dB和0.7788, 有效解决了颜色失真、对比度下降和雾霾残留等问题.  相似文献   

8.
目的 X光图像违禁物品检测一直是安检领域的一个基础问题,安检违禁物品形式各异,尺度变化大,以及透视性导致大量物体堆放时出现重叠遮挡现象,传统图像处理模型很容易出现漏检误检,召回率低。针对以上问题,提出一种融合多尺度特征与全局上下文信息的特征增强融合网络(feature enhancement fusion network,FEFNet)用于X光违禁物品检测。方法 首先针对特征主干网络darknet53,加入空间坐标的注意力机制,将位置信息嵌入到通道注意力中,分别沿两个空间方向聚合特征,增强特征提取器对违禁目标的特征提取能力,抑制背景噪声干扰。然后,将特征提取主干网络输出的特征编码为1维向量,利用自监督二阶融合获取特征空间像素相关性矩阵,进而获取完整的全局上下文信息,为视觉遮挡区域提供全局信息指导。针对违禁物品尺度不一的问题,提出多尺度特征金字塔融合模块,增加一层小感受野预测特征用于提高对小尺度违禁目标的检测能力。最后,通过融合全局上下文特征信息和局部多尺度细节特征解决违禁物品之间的视觉遮挡问题。结果 在SIXRay-Lite (security inspection X-ray)数据集上进行训练和验证,并与SSD (single shot detection)、Faster R-CNN、RetinaNet、YOLOv5(you only look once)和ACMNet (asymmetrical convolution multi-view neural network)模型进行了对比实验。结果表明,本文模型在SIXray-Lite数据集上的mAP (mean average precision)达到85.64%,特征增强融合模块和多尺度特征金字塔融合模块较原有模型分别提升了6.73%和5.93%,总体检测精度较原有检测网络提升了11.24%。结论 提出的特征增强融合检测模型能够更好地提取显著差异特征,降低背景噪声干扰,提高对多尺度以及小型违禁物品的检测能力。同时利用全局上下文特征信息和多尺度局部特征相结合,有效地缓解了违禁物品之间的视觉遮挡现象,在保证实时性的同时有效地提高了模型的整体检测精度。  相似文献   

9.
目的 去模糊任务通常难以进行对图像纹理细节的学习,所复原图像的细节信息不丰富,图像边缘不够清晰,并且需要耗费大量时间。本文通过对图像去模糊方法进行分析,同时结合深度学习和对抗学习的方法,提出一种新型的基于生成对抗网络(generative adversarial network, GAN)的模糊图像多尺度复原方法。方法 使用多尺度级联网络结构,采用由粗到细的策略对模糊图像进行复原,增强去模糊图像的纹理细节;同时采用改进的残差卷积结构,在不增加计算量的同时,加入并行空洞卷积模块,增加了感受野,获得更大范围的特征信息;并且加入通道注意力模块,通过对通道之间的相关性进行建模,加强有效特征权重,并抑制无效特征;在损失函数方面,结合感知损失(perceptual loss)以及最小均方差(mean squared error, MSE)损失,保证生成图像和清晰图像内容一致性。结果 通过全参考图像质量评价指标峰值信噪比(peak signal to noise ratio, PSNR)、结构相似性(structural similarity, SSIM)以及复原时间来评价算法优劣。与其他方法的对比结果表明,本文方法生成的去模糊图像PSNR指标提升至少3.8%,复原图像的边缘也更加清晰。将去模糊后的图像应用于YOLO-v4(you only look once)目标检测网络,发现去模糊后的图像可以检测到更小的物体,识别物体的数量有所增加,所识别物体的置信度也有一定的提升。结论 采用由粗到细的策略对模糊图像进行复原,在残差网络中注入通道注意力模块以及并行空洞卷积模块改进网络的性能,并进一步简化网络结构,有效提升了复原速度。同时,复原图像有着更清晰的边缘和更丰富的细节信息。  相似文献   

10.
目的 近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法 首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果 在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31.69 dB、28.24 dB、27.39 dB和25.46 dB,相比其他方法的结果具有一定提升。结论 本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。  相似文献   

11.
动态场景的非均匀盲去模糊一直是图像复原领域中的一个难题。针对目前的模糊图像复原算法不能很好地解决多样性模糊源的问题,提出了一种端到端的基于多尺度网络的运动模糊图像复原算法。所提算法使用修剪过的残差块作为基本单元,且在每一级尺度上都采用相同的非对称编解码网络。为了更好地提取输入图像特征,在编码端使用引入注意力机制的残差模块,还加入了空间金字塔池化层。编码端和解码端中间的循环单元可以获取图像的空间信息,从而利用图像空间的连续性来进行非均匀运动模糊图像的复原。测试结果显示,在GoPro数据集上所提算法的峰值信噪比(PSNR)达到33.69 dB,结构相似性(SSIM)达到0.953 7,且能够更好地复原模糊图像的细节信息,而在Blur数据集上所提算法的PSNR为31.47 dB,SSIM为0.904 7。实验结果表明,与尺度递归网络和深度层次化多patch网络相比,所提算法取得了更优的模糊图像复原效果。  相似文献   

12.
针对拍摄场景中物体运动不一致所带来的非均匀模糊,为提高复杂运动场景中去模糊的效果,提出一种多尺度编解码深度卷积网络。该网络采用"从粗到细"的多尺度级联结构,在模糊核未知条件下,实现盲去模糊;其中,在该网络的编解码模块中,提出一种快速多尺度残差块,使用两个感受野不同的分支增强网络对多尺度特征的适应能力;此外,在编解码之间增加跳跃连接,丰富解码端信息。与2018年国际计算机视觉与模式识别会议(CVPR)上提出的多尺度循环网络相比,峰值信噪比(PSNR)高出0.06 dB;与2017年CVPR上提出的深度多尺度卷积网络相比,峰值信噪比和平均结构相似性(MSSIM)分别提高了1.4%和3.2%。实验结果表明,该网络能快速去除图像模糊,恢复出图像原有的边缘结构和纹理细节。  相似文献   

13.
基于正则化约束的遥感图像多尺度去模糊   总被引:1,自引:0,他引:1       下载免费PDF全文
目的遥感成像过程中的图像降质严重影响了高分辨率成像与高精度探测,为了改善遥感图像质量,提出了基于正则化约束的遥感图像多尺度去模糊方法。方法首先利用双边滤波器和冲击滤波对遥感图像进行预处理,然后结合遥感图像模糊核的稀疏特性,使用正则化方法迭代求解模糊核最优解,最后利用基于梯度稀疏的非盲反卷积方法得到去模糊结果。此外,针对图像模糊程度较严重的情况,分析了尺度信息对去模糊结果的影响,提出了多尺度迭代优化方法。结果采用本文方法对大量遥感图像进行去模糊,实验结果表明该方法能有效地去除遥感成像产生的模糊,在保持图像边缘和细节的同时,可有效抑制振铃效应。相比其他方法,本文方法恢复图像的边缘强度平均提高28.7%,对比度平均提高17.6%。结论提出一种正则化约束的遥感图像多尺度去模糊方法,主观视觉感受和客观评价指标都表明该方法可以有效提升遥感图像质量。  相似文献   

14.
目的 非均匀盲去运动模糊是图像处理和计算机视觉中的基础课题之一。传统去模糊算法有处理模糊种类单一、耗费时间两大缺点,且一直未能有效解决。随着神经网络在图像生成领域的出色表现,本文把去运动模糊视为图像生成的一种特殊问题,提出一种基于神经网络的快速去模糊方法。方法 首先,将图像分类方向表现优异的密集连接卷积网络(dense connected convolutional network, DenseNets)应用到去模糊领域,该网络能充分利用中间层的有用信息。在损失函数方面,采用更符合去模糊目的的感知损失(perceptual loss),保证生成图像和清晰图像在内容上的一致性。采用生成对抗网络(generative adversarial network,GAN),使生成的图像在感官上与清晰图像更加接近。结果 通过测试生成图像相对于清晰图像的峰值信噪比 (peak signal to noise ratio,PSNR),结构相似性 (structural similarity,SSIM)和复原时间来评价算法性能的优劣。相比DeblurGAN(blind motion deblurring using conditional adversarial networks),本文算法在GOPRO测试集上的平均PSNR提高了0.91,复原时间缩短了0.32 s,能成功恢复出因运动模糊而丢失的细节信息。在Kohler数据集上的性能也优于当前主流算法,能够处理不同的模糊核,鲁棒性强。结论 本文算法网络结构简单,复原效果好,生成图像的速度也明显快于其他方法。同时,该算法鲁棒性强,适合处理各种因运动模糊而导致的图像退化问题。  相似文献   

15.
针对图像阴影去除算法中复杂地物或与阴影区域纹理相似的暗区域阴影去除不完全的问题,提出了一种注意力与多尺度融合的图像阴影去除算法。该算法基于生成对抗网络框架构建。利用自定义的空洞残差块进行特征提取,获得精确的阴影特征信息并输入到注意力引导的编码网络;在注意力引导的编码阶段进行多尺度的特征融合,获取不同层次的感受野,使编码器能够在不同尺度上捕捉上下文信息;利用多重注意力机制引导判别网络对生成的无阴影图像进行鉴别,进而减少判别网络关键信息损失,提高判别网络的鉴别效果。分别在ISTD(dataset with image shadow triplets)与SRD(dataset for shadow removal)公开数据集上进行验证,实验结果表明:该算法视觉效果表现良好,单幅阴影去除后的图片与数据集中真实无阴影图片进行对比,SSIM(structural similarity)可达到0.978,PSNR(peak signal to noise ratio)可达到32.2 dB,RMSE(root mean squared error)可达到6.2,相比同类算法,具有显著优势,且对复杂地物...  相似文献   

16.
王峰  蔡立志  张娟 《计算机应用研究》2021,38(11):3478-3483
针对低分辨率模糊图像实施超分辨率重建后出现大量伪影和边缘纹理不清晰问题,提出了一种双分支融合的反馈迭代金字塔算法.首先采用不同的分支模块分别提取低分辨率模糊图像中潜在的去模糊特征和超分辨率特征信息;然后采用自适应融合机制将两种不同性质的特征进行信息匹配,使网络在去模糊和超分辨率重建模块中更加关注模糊区域;其次使用迭代金字塔重建模块将低分辨率模糊图像渐进重建为逼近真实分布的超分辨率清晰图像;最后重建图像通过分支反馈模块生成清晰低分辨率图像,构建反馈监督.在GOPRO数据集中与现有算法的对比实验结果表明,所提算法能够生成纹理细节更加清晰的超分辨率图像.  相似文献   

17.
针对多尺度CNN网络编码过程中存在获取特征信息不足,导致重建的去运动模糊图像质量不佳。该研究提出了一种将明暗通道先验嵌入多尺度网络,并在网络中引入双重注意力机制的解决方法,该方法增强了网络对先验信息的获取能力,加强重点信息获取的同时提高动态去模糊效果。该方法与同类方法相比峰值信噪比(PSNR)和结构相似度(SSIM)均获得了提升。  相似文献   

18.
目的 行人检测在自动驾驶、视频监控领域中有着广泛应用,是一个热门的研究话题。针对当前基于深度学习的行人检测算法在分辨率较低、行人尺度较小的情况下存在误检和漏检问题,提出一种融合多层特征的多尺度的行人检测算法。方法 首先,针对行人检测问题,删除了深度残差网络的一部分,仅采用深度残差网络的3个区域提取特征图,然后采用最邻近上采样法将最后一层提取的特征图放大两倍后再用相加法,将高层语义信息丰富的特征和低层细节信息丰富的特征进行融合;最后将融合后的3层特征分别输入区域候选网络中,经过softmax分类,得到带有行人的候选框,从而实现行人检测的目的。结果 实验结果表明,在Caltech行人检测数据集上,在每幅图像虚警率(FPPI)为10%的条件下,本文算法丢失率仅为57.88%,比最好的模型之一——多尺度卷积神经网络模型(MS-CNN)丢失率(60.95%)降低3.07%。结论 深层的特征具有高语义信息且感受野较大的特点,而浅层的特征具有位置信息且感受野较小的特点,融合两者特征可以达到增强深层特征的效果,让深层的特征具有较为丰富的目标位置信息。融合后的多层特征图具有不同程度的细节和语义信息,对检测不同尺度的行人有较好的效果。所以利用融合后的特征进行行人检测,能够提高行人检测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号